# VME850 Bus Analyzer



# User's Manual

Silicon Control 1020 Milwaukee Ave. Suite 305 Deerfield, IL 60015

> January 2008 Revision 3.6

Silicon Control does not warrant the operation of the program will be uninterrupted or error free. In no event, will Silicon Control be liable for any damages including loss of data, lost profits, or cost of other incidental, consequential, or indirect damages arising from the use of this program or the accompanying documentation.

### This Manual Ø SILICON CONTROL INC. ALL RIGHTS RESERVED.

No portion of this document may be copied without the written consent of Silicon Control, Inc. This program and documentation are subject to the copyright protection laws. The information in this document is subject to change without notice.

#### Silicon Control Inc. Software License Agreement

#### AnalyzeIt! Windows Graphical User Interface Program for Silicon Control VME850 System Analyzer

Please read and be aware of the items listed in the following agreement. If you do not approve of the agreement, please return the complete package to the point of purchase for a complete refund.

#### 1. USAGE RIGHTS

- a. Your rights with respect to the Program are non-exclusive.
- b. The Program can only be used by one user, on one computer at a time.
- c. The Program can be transferred to another computer as long as the requirements of item (b.) are satisfied.
- d. The Program and its documentation must not be distributed to others.
- e. Do not alter or modify the Program without prior consent of Silicon Control Inc.

#### 2. BACKUP COPIES

- a. You may make as many backup copies of the Program as you like.
- b. The Silicon Control Inc. Software copyright notice must be included on each backup copy.

#### 3. COPYRIGHTS

- a. The Program is copyrighted.
- b. The Program documentation is copyrighted.
- c. You may only copy the Program and program documentation for backup or to load the Program into your computer as part of program execution.

#### 4. TERM OF LICENSE

- a. The Software License Agreement is effective until terminated.
- b. Terminate the Software License Agreement by destroying the Program, the documentation, and all backup copies.

#### 5. LIMITED WARRANTY

- a. This Program is provided without any warranty of any kind.
- b. You bear the risk as to performance and suitability of the Program.
- c. Silicon Control Inc. does not warrant or guarantee the correctness, accuracy, completeness, or reliability of the Program.
- d. Silicon Control Inc. warrants the diskettes on which the Program is provided and any lock device provided to be free from manufacturers defects under normal use for a period of 90 days from the date of purchase.
- e. If the diskettes or lock device fail due to neglect, accident, or abuse, Silicon Control Inc. shall not be liable to replace the diskettes or lock device under this limited warranty.
- f. This limited warranty gives you specific legal rights. You may have additional rights depending on the state and/or country in which you live.
- g. Neither Silicon Control Inc. nor anyone involved in the development, manufacturing, or distribution of the Program or lock device shall be liable for any damages from the use, results of use, or inability to use the Program or lock device, even if Silicon Control Inc. has been notified of the probability of such damages or claims. Some states (countries) do not allow liability limitations for consequential or incidental damages or claims. This item may not be applicable.

#### 6. LAWS

a. This Software License Agreement shall be governed by the laws of the State of Illinois, United States of America.

#### 7. ACCEPTANCE OF AGREEMENT

- a. You acknowledge that you have read, understand, and agree to abide by this Software License Agreement.
- b. You agree that this Software License Agreement is the complete agreement between Silicon Control Inc. and you.
- c. You agree that this Software License Agreement supersedes any and all prior agreements, written or verbal, between Silicon Control Inc. and you.

#### TABLE OF CONTENTS

## CHAPTER 1. INTRODUCTION 💷

1.1 OVERVIEW1.2 QUICK START

## CHAPTER 2. INSTALLATION

- 2.1. HARDWARE
- 2.2. SOFTWARE

## CHAPTER 3. CAPTURING BUS ACTIVITY 🏢 🔝

3.1 STATE DISPLAY
3.2 WAVEFORM DISPLAY
3.3 SIGNAL NAMES
3.4 SIGNAL PROPERTIES
3.5 STATUS BAR
3.6 SETUPS
3.7 TIME MARKERS
3.8 SEARCHING AND JUMPING
3.9 POWER ZOOM
3.10 SAVING AND LOADING CAPTURED DATA
3.11 PRINTING
3.12 CAPTURING 2eVME AND 2eSST

## CHAPTER 4. PERFORMANCE ANALYSIS

4.1 PERFORMANCE DISPLAY
4.2 SETUP
4.3 UTILIZATION
4.4 TRANSFER RATE
4.5 LATENCY
4.6 BURST DISTRIBUTION
4.7 STATISTICS
4.8 SAVING AND LOADING DATA

## CHAPTER 5. MASTER 😨

5.1 DATA DISPLAY
5.2 ADDRESS
5.3 DATA
5.4 COMMANDS
5.5 SAVING AND LOADING DATA
5.6 OPTIONS

## CHAPTER 6. STIMULUS

6.1 STIMULUS CONDITIONS6.2 STIMULUS CONTROL6.3 SAVING AND LOADING STIMULUS6.4 OPTIONS

## CHAPTER 7. CONFIGURATION SCANNING

7.1 CONFIGURATION HEADER
7.2 CONFIGURATION ANALYSIS
7.3 FINDING DEVICES
7.4 SAVING AND LOADING CONFIGURATION INFORMATION
7.5 READING AND WRITING CONFIGURATION
7.6 OPTIONS

## CHAPTER 8. TARGET

8.1 DATA DISPLAY
8.2 ADDRESS
8.3 DATA
8.4 COMMAND
8.5 SAVING AND LOADING DATA
8.6 OPTIONS

## CHAPTER 9. PROTOCOL CHECKING

9.1 ANOMALY CHECKLIST
9.2 TEST RESULTS
9.3 SAVING AND LOADING RESULTS
9.4 TRACE CONTROL
9.5 OPTIONS

## CHAPTER 10. BACKPLANE TEST

*10.1 SHORT TEST 10.2 DRIVE TEST* 

## **CHAPTER 11. UTILITIES**

11.1 SETUP11.2 DOWNLOAD FIRMWARE11.3 BOARD INFORMATION11.4 BUS CONFIGURATION

#### **CHAPTER 12. MISCELLANEOUS**

*12.1 ONLINE HELP 12.2 EXPANSION CONNECTOR* 

**APPENDIX A – ANALYZER SPECIFICATIONS APPENDIX B – API INTERFACE DOCUMENT** 

#### CHAPTER 1 INTRODUCTION

Silicon Control Inc. introduces the ultimate analyzer and exerciser for VME systems. The 850 family of analyzers represent our 4th generation VME analyzer combining high performance hardware with a sophisticated and intuitive software interface. The result is a powerful diagnostic tool for bus analysis - all on a single plug-in card!

### 1.1. OVERVIEW

The VME850 analyzes and exercises the VME64x bus. It also has the ability to analyze and exercise the P2 and P0 user defined signals through optional plug on modules. Communication to the analyzer is provided by both USB and RS232 connections.



## 1.1.1 Features

The VME850 analyzer provides a multitude of functions to help you analyze your system.

#### VME64 / VME64x Analyzer/Exerciser

- Single 6U VME board
- Supports SCT, BLT, MBLT, 2eVME, 2eSST protocols
- Optional Analysis/Stimulus of User Defined P2 and P0 signals
- Choice of 96 or 160 pin P1/P2 connectors

#### Analyze Bus Activity

- State Analysis up to 100 Mhz
- Timing Analysis up to 400 Mhz
- Complex Triggering and Filtering
- Time Stamping
- Performance Analysis of Bus Utilization, Transfer Rates, Statistics

#### **Exercise Bus Activity**

- Master Transfers
- Stimulus Generation
- Fault Injection and Timing Modification
- CR/CSR Scan and Decode
- Backplane Short Test

#### Slave Memory

Windowed VME bus memory

#### **Protocol and Timing Violation Checker**

- Detects over 100 timing and protocol violations
- Displayed and Used as Trigger in State/Timing Analysis

#### P2 Analysis of User Defined Signals

- 160 pin connector row a,c,d
- Optional plug-in module

#### P0 Analysis of User Defined Signals

- 95 pin connector row a,b,c,d,e
- Optional plug-in module

#### Communication

- USB
- RS232

#### **Other Features**

- External Power Connection
- External Trigger Inputs and Output
- Extensive Self Test
- Front Panel Reset and LED Indicators

#### Software User Interface Packages

- Analyzelt! PC GUI Software
- API Library provides User Program Control

## 1.3 QUICK START

This chapter provides a quick guide to installing and operating the analyzer with the AnalyzeIt! Windows software.

#### 1.2.1. Hardware Installation

Insert the analyzer into an empty bus slot. Connect either the included RS232 or USB cable between the analyzer and a PC. If you are using the USB interface, the message "New Hardware Found" may appear after you connect the USB cable and apply power to the analyzer. If this message does not appear go to the Control Panel and Add New Hardware to install the drivers. The drivers are included on the CD ROM.

### 1.2.2. Software Installation

Install the AnalyzeIt! Software using the included CD or download the software from the Silicon Control web site at <u>www.silicon-control.com</u>.

### 1.2.3 Main Menu

Run the AnalyzeIt! Software. When using the RS232 port select Utilities then Setup to enter the COM port and baud rate. If the software cannot communicate with the analyzer it will enter a Demo mode.

To start a new function, select **File** then **New** or click the function icons on the tool bar.



## 1.2.4. Capturing Bus Activity

To start capturing and viewing bus activity, select **File** in the main menu then **New, Capture,** and **State** or click the state display icon. I A blank state display appears. To start capturing activity, click the GO icon . A control bar indicates the buffer and trigger status and the samples before and after the trigger. Captured data fills the screen when the trace buffer fills or the STOP icon is clicked.

## 1.2.5 State Display

| Right click to<br>change signal<br>Marker Times properties |                 | k to<br>signal<br>s | Trace Setups     | Power Zoom            |         | Start and San Stop capture and |                      | nple before<br>1 after trigger |                     | alyzer<br>atus |        |
|------------------------------------------------------------|-----------------|---------------------|------------------|-----------------------|---------|--------------------------------|----------------------|--------------------------------|---------------------|----------------|--------|
|                                                            |                 | 1                   |                  |                       |         |                                |                      |                                |                     |                |        |
| Trace ·                                                    | - test2         |                     |                  |                       |         |                                |                      |                                |                     |                | _ 🗆 🗙  |
| <b>■</b> →▲· 62.                                           | 40us <b>■→T</b> | 91.51us             | <b>T</b> 29.11us | <u>S</u> etup address | • ?     | £ 🔎                            | <u>60</u>            | 0000100                        | € <b>▼</b> → 000010 | 0 11           | SAVED  |
| SAMPLE                                                     | COMMAND         | ADDRESS32           | DATA32           | AM                    | TIME    | DELTA                          | BUS D                | DCTOR                          | AM[5:0]             | BR[3:0]        |        |
| -11                                                        | Write           | 0047FFEA            | 55555555         | A32 SUPV DATA         | 10.54us |                                |                      |                                | OD                  | F              | 55555  |
| -10                                                        | Write           | 0047FFEC            | 55555555         | A32 SUPV DATA         | 11.20us |                                |                      |                                | OD                  | F              | 55555  |
| -9                                                         | Write           | 0047FFEE            | 55555555         | A32 SUPV DATA         | 12.01us |                                |                      |                                | OD                  | F              | 55555  |
| -8                                                         | Write           | 0047FFF0            | 55555555         | A32 SUPV DATA         | 8.775us |                                |                      |                                | OD                  | F              | 55555  |
| - 7                                                        | Write           | 0047FFF2            | 55555555         | A32 SUPV DATA         | 9.405us | 1200                           |                      |                                | OD                  | F              | 55555  |
| -6                                                         | Write           | 0047FFF4            | 55555555         | A32 SUPV DATA         | 10.06us | 62.40us                        |                      |                                | OD                  | F              | 55555  |
| - 5                                                        | Write           | 0047FFF6            | 55555555         | A32 SUPV DATA         | 10.72us |                                |                      |                                | OD                  | F              | 55555  |
| - 4                                                        | Write           | 0047FFF8            | 55555555         | A32 SUPV DATA         | 11.38us |                                |                      |                                | OD                  | F              | 55555  |
| -3                                                         | Write           | 0047FFFA            | 55555555         | A32 SUPV DATA         | 12.04us | <b>A</b>                       |                      |                                | OD                  | F              | 55555  |
| -2                                                         | Write           | 0047FFFC            | 55555555         | A32 SUPV DATA         | 9.045us |                                |                      |                                | OD                  | F              | 55555  |
| -1                                                         | Write           | 0047FFFE            | 55555555         | A32 SUPV DATA         | 9.705us |                                |                      |                                | OD                  | F              | 55555  |
| 0                                                          | Write           | 00480000            | 55555555         | A32 SUPV DATA         | 10.36us | T                              |                      |                                | OD                  | F              | 55555  |
| 1                                                          | Write           | 00480002            | 55555555         | A32 SUPV DATA         | 11.02us |                                |                      |                                | OD                  | F              | 5555   |
| 2                                                          | Write           | 00480004            | 55555555         | A32 SUPV DATA         | 11.68us |                                |                      |                                | OD                  | F              | 55555  |
| 3                                                          | Write           | 00480006            | 55555555         | A32 SUPV DATA         | 8.505us |                                |                      |                                | OD                  | F              | \$5555 |
| 4                                                          | Write           | 00480008            | 55555555         | A32 SUPV DATA         | 9.165us |                                |                      |                                | OD                  | F              | 55555  |
| 5                                                          | Write           | 0048000A            | 55555555         | A32 SUPV DATA         | 9.975us |                                |                      |                                | OD                  | F /            | 55555  |
|                                                            | 1               |                     |                  |                       |         |                                |                      |                                |                     | 1              |        |
| Signal                                                     | scroll bar      | Trig                | ger marker       | Marker                | 1       | M                              | arker 2<br>ght Click |                                | Sample              | e scroll ba    | ar     |

## 1.2.6. Viewing Bus Activity

Use the sample scroll bar to view more data and the signal scroll bar to view more signals. The window may be resized to view more information. Add time markers by clicking directly in the data window. Left click for one marker, right click for another.

## 1.2.7. Changing the Display

Signals in the state display can be moved and resized. Click on the signal name and drag it to another position. Move the cursor over the edge of the signal box and drag the edge to resize it.

Right clicking on a signal name changes its properties. You can change the color and base, insert and delete signals, expand and collapse grouped signals and change the range of signals in a group.

## 1.2.8. Trace Setup

To control when and what bus activity to capture, click on the setup button Setup . The setup window is divided into Event and Trace Control sections. Events specify what to look for on the bus and are used in the trace controls.

| race   | Setup     |                 |                   |      |           |          |      |          |              |                |         | X            |
|--------|-----------|-----------------|-------------------|------|-----------|----------|------|----------|--------------|----------------|---------|--------------|
| _ Setu | ф         |                 |                   |      |           | -        |      |          | Setup Wizard | Open           | 1       | ок (         |
| Nam    | ne        | trigger         |                   |      |           |          |      |          | <b>3</b>     |                |         |              |
| Des    | cription  | Trigger on a wr | ite to address 40 | 0000 | <b>A</b>  | ]        |      |          | <b></b>      | <u>Save</u>    |         | Lancel       |
|        |           |                 |                   |      |           |          |      |          |              | <u>D</u> elete |         |              |
|        |           | 1               |                   |      | <u> </u>  | 1        |      |          |              |                |         | <u>H</u> elp |
| Eve    | nts       |                 |                   |      |           |          |      |          |              |                |         |              |
| E      | /ENT      | COMMAND         | ADDRESS32         | =<>  | DATA32    | =<>      | A    | М        | AD[6         | 63:0]          | AM[5:0] | ANON 🔺       |
|        | E1:       | Write           | 00400000          | =    | XXXXXXXX  | Any      | AT   | 11       | XXXXXXXX     | 00400000       | ХХ      | Nor          |
|        | E2:       | All             | XXXXXXXX          | Any  | XXXXXXXX  | Any      | Al   | 11       | XXXXXXXX     | XXXXXXXX       | ХХ      | Nor          |
|        | E3:       | All             | XXXXXXXX          | Any  | XXXXXXXX  | Any      | Al   | 11       | XXXXXXXX     | XXXXXXXX       | ХХ      | Nor          |
|        | E4:       | All             | XXXXXXXX          | Any  | XXXXXXXX  | Any      | Al   | 11       | XXXXXXXX     | XXXXXXXX       | XX      | Not 👻        |
| 1      |           |                 |                   |      |           |          |      |          |              |                |         |              |
| _ Trac | e Contro: | I               |                   |      |           |          |      |          |              |                |         |              |
| Sar    | nple Cloc | k Sync          | <b>•</b>          |      | Trigger I | Position | 50%  | <b>-</b> | Power Zoom   | Sample Clock   | 3.75 ns | <b>_</b>     |
| L1:    | IF        |                 | E1                |      | OCCURS    | 1        | THEN | Goto L   | 1, Trigger   | 1              |         | 4            |
|        | STORE     |                 | E3                |      |           |          | ELSE | Go       | oto L1       |                |         |              |
|        |           |                 |                   |      |           |          |      |          |              | -              |         |              |
| L2:    | IF        | ١               | lone              |      | OCCURS    | 1        | THEN | Go       | oto L1       | 1              |         |              |
|        | STORE     |                 | None              |      |           |          | ELSE | Go       | oto L1       | i              |         |              |
|        |           |                 |                   |      |           |          |      |          |              | 1              |         |              |
| L3:    | IF        | ١               | lone              |      | OCCURS    | 1        | THEN | Go       | Goto L1      |                |         |              |
|        | STORE     |                 | None              |      |           | ELSE G   |      |          | Goto L 1     |                |         |              |
|        |           |                 |                   |      |           |          |      |          |              | 1              |         | -            |
|        |           |                 |                   |      |           |          |      |          |              |                |         | <u> </u>     |
|        |           |                 |                   |      |           |          |      |          |              |                |         |              |

## **Events**

To specify an event condition, click on the signal fields in the event section. An "X" (Don't Care) means that the signal will not be used. Some fields such as COMMAND open a dialog box while others toggle through predefined states each time the field is clicked.

#### **Trace** Control

Trace controls specify how the analyzer captures bus activity. This multi-level structure provides a flexible way to setup simple or complex trace control.

Setups can be named, given a description, saved and used again. The Setup Wizard helps perform typical setups by asking a series of questions. Setup fields are filled in based on the answers to these questions.

## 1.2.9 Examples

Example – Trigger on a Memory Read at address 100 hex.

1. Click the Setup button \_\_\_\_\_\_ in a state or waveform window.

2. On the event labeled E1 set the fields as shown below:

| EVENT | COMMAND | ADR/DATA | =<> | AD[63:0]          |
|-------|---------|----------|-----|-------------------|
| E1:   | Mem Rd  | Address  | =   | XXXXXXXX XXXXX100 |

3. On the trace control labeled L1 set the fields as shown below:

| Sample Clock |       | Sync 💌 |   | Trigger Position |  | 50%    | • |      |                  |
|--------------|-------|--------|---|------------------|--|--------|---|------|------------------|
| L1:          | IF    |        | I | 1                |  | OCCURS | 1 | THEN | Goto L1, Trigger |
|              | STORE |        |   | All              |  |        |   | ELSE | Goto L1          |

4. Click the OK button to send the setup to the analyzer.

5. Click the GO button in the state or waveform window to start capturing data. Captured data will be displayed around the trigger sample.

### 1.2.7. Other Functions

To create other windows go to File and then New on the main menu or click on the function's icon on the main tool bar.

- □ The waveform display represents captured data in a graphical display and has many of the same features as the state display. Click and the tool bar to open a waveform window.
- □ Use the Master and Stimulus functions to transfer data onto the bus. Click , on the tool bar to open a master window. Click , on the tool bar to open a stimulus window.
- Performance analysis includes 5 functions for measuring Bus Utilization, Transfer Rate, Latency, Burst Distribution and Statistics. Click on the tool bar to open a Bus Utilization window. To open the other performance windows click File New Performance and then the measurement type.
- Anomaly detection checks for protocol and timing violations and can be used to trigger and qualify captured trace data. Click on the tool bar to open an Anomaly window.
- □ Target memory provides a windowed bus memory with programmed responses. Click in the tool bar to open a target window.
- □ Configuration scanning identifies and analyzes devices in a system. To open a configuration scanning window click File New Exerciser Configuration.

Each of these functions is described in detail in the following chapters.

#### CHAPTER 2 INSTALLATION

#### 2.1 HARDWARE INSTALLATION

#### 2.1.1 Jumpers

Jumpers on the analyzer provide configuration options for setting interfaces, hardware handshaking, reset control, controller functions and driving the system clock. These jumpers are described below. Figure 2.1 shows the jumper locations.

#### Jumper 1 – Reset Jumper

| <b>Position</b> | Description                                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|
| 1               | User Controlled Backplane Reset –Generates a system reset through the AnalyzeIt!                                           |
|                 | Software.                                                                                                                  |
| 2               | <b>Power Up and Pushbutton System Reset</b> – Generates a system reset at power up or when the pushbutton is pressed.      |
| 3 (default)     | <b>Power Up and Pushbutton Analyzer Reset</b> – Generates an analyzer reset at power up or when the pushbutton is pressed. |
| Jumper 2 –      | Controller                                                                                                                 |
| <u>Position</u> | Description                                                                                                                |
| 1               | Controller – Insert this jumper when the analyzer is a controller providing the arbitration                                |
|                 | functions.                                                                                                                 |
| 2               | Drive System Clock – Insert this jumper to drive the SYSCLOCK signal at 16 Mhz.                                            |

3 Master Lock – Insert this jumper to inhibit any feature that would drive a signal on the VME bus. Master Lock is displayed on the bottom right corner of the main AnalyzeIt window.

## Jumper 3 – RS232 Hardware Handshaking

| Position | <b>Description</b> |
|----------|--------------------|
| 1        | RTS control        |
| 2        | CTS control        |

## Jumper 4 – Download Firmware

PositionDescription1Insert before downloading firmware. Remove for normal operation.

## Jumper 5 – Internal Clock

Installing this jumper enables the on board analyzer clock generator to drive the internal analyzer logic. This jumper should always be installed.

If the P2 or P0 analyzer optional module is installed this clock also drives and synchronizes these modules.



## Figure 2.1 - Jumper Locations

the state of the s

The second se

|                  |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | •                                 |                          |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|--------------------------|--|--|--|--|--|
| USB              | RS232                                                                                                                                       | Trigger<br>IN/OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reset                                        | LEDs                              | Power                    |  |  |  |  |  |
| USB              | A standard Type B connector of                                                                                                              | perating at 12Mb/sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                   |                          |  |  |  |  |  |
| RS232            | A female DB9 connector operat<br>hardware handshaking.                                                                                      | A female DB9 connector operating at up to 57.6K baud with RTS and CTS hardware handshaking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                   |                          |  |  |  |  |  |
| Trigger IN/OUT   | A 10 pin shrouded male IDC connector on 2mm centers with a keyed slot. The signals include 1 ground, 1 trigger output and 8 trigger inputs. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                   |                          |  |  |  |  |  |
| Pushbutton Reset | Resets the analyzer / system bas                                                                                                            | sed on Jumper 1 setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gs.                                          |                                   |                          |  |  |  |  |  |
| LEDs             | The green LED illuminates afte<br>The red LED illuminates for ap<br>that hardware is being configure<br>during configuration.               | r a successful power up<br>proximately 1 second a<br>ed. If the red LED stays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o and self-to<br>at power up<br>s on an erro | est diagr<br>and ind<br>or occurr | iostics.<br>icates<br>ed |  |  |  |  |  |
| External Power   | A 2-pin power connector provid<br>supply voltage range must be be<br>minimum current of 2.8 Amps.                                           | les external power to the tween 4.5V and 5.5V an | ne analyzer<br>and capable                   | . The po<br>e of supp             | wer<br>olying a          |  |  |  |  |  |
|                  | <i>Important:</i> When supplying ex F2 fuse installed. Carefully rem similar device.                                                        | ternal power the F1 fus<br>ove a fuse from the fus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | se must be<br>se holder w                    | removec<br>ith a plic             | l and the<br>ers or      |  |  |  |  |  |

## 2.1.3. Cables

**USB** – An 10 foot USB cable is included with a Type A connector on the PC side and a Type B connector on the analyzer side.

**RS232** – An 10 foot RS232 cable is included with a DB9 female connector on the PC side and a DB9 male connector on the analyzer side.

**Trigger** – A 10 pin trigger input/output ribbon cable is included with a 10-pin IDC connector on the analyzer side and individual test clips on the other side. The test clips are color coded as follows:

| Signal |             | Color  |
|--------|-------------|--------|
|        | Ground      | Black  |
|        | Trigger Out | Yellow |
|        | Trigger In  | Red    |
|        | (8)         |        |

**Power** – This cable provides external power to the analyzer and consists of a 2 wire molded power connector with un-terminated red and black heavy gauge wires. The red wire must be connected to a voltage source between 4.5V and 5.5V with a minimum current capability of 2.8A. The black wire connects to ground.

*Important:* When supplying external power the F1 fuse must be removed and the F2 fuse installed. Carefully remove a fuse from the fuse holder with a pliers or similar device.

### 2.2 SOFTWARE INSTALLATION

#### 2.2.1. PC Requirements

The system requirements for a PC running the AnalyzeIt! Software is as follows:

| <u>Minimum</u>      | Recommended                   |
|---------------------|-------------------------------|
| Pentium 3 Processor | Pentium 3 Processor at 600Mhz |
| 2GB Hard Drive      | 5GB Hard Drive                |
| 64MB RAM            | 128K RAM                      |
| CD ROM Drive        | CD ROM Drive                  |
| USB or Serial port  | USB or Serial port            |
| 15" Monitor         | 17" Monitor                   |
| Mouse               | Mouse                         |

#### 2.2.2 Software Installation

#### 2.2.2.1 AnalyzeIt! Software

Install the AnalyzeIt! Software using the included CD or download the software from the Silicon Control web site at <u>www.silicon-control.com</u>.

After inserting the CD into the drive, browse for the file AnalyzeIt! The file is a self-extracting executable file. To install the software double click the file. Follow the installation instructions on the screen. You will have to restart your computer after installation.

#### 2.2.2.2 USB Drivers

If you are using the USB interface, the message "New Hardware Found" may appear after you connect the USB cable and apply power to the analyzer. If this message does not appear go to the Control Panel and Add New Hardware to install the drivers. The drivers are included on the CD ROM.

#### 2.2.2.3 Software Updates

The latest up to date software is available on Silicon Control's web site at <u>www.silicon-control.com</u>. Download the AnalyzeIt! Software into a folder on your computer. The downloaded file is a self-extracting executable file. To install the software double click the file.

#### 2.2.3. Initial Setup

Run the software by double clicking the AnalyzeIt! Icon on the desktop or go to Start – Programs – AnalyzeIt! The analyzer has both RS232 and USB interfaces. You must select which interface before using the analyzer. The AnalyzeIt software will come up in a demo mode if it cannot communicate with the analyzer. You can then set the interface you are using and restart the software. The new interface setting will be used the next time you start the software.

To configure the RS232 or USB port, click on Utilities in the Main Menu and select Setup.

| Setup      |        |       |   | ×      |
|------------|--------|-------|---|--------|
| _ Serial F | ort    |       |   | OK     |
| Port       |        | COM1  | • | Cancel |
| Baud       | l Rate | 57600 | • |        |
|            |        |       |   |        |

For the RS232 interface, enter the COM port number and the baud rate you are using. The board rate of the analyzer will be automatically adjusted to match the software setting. Select USB if using the USB port.

Note: If you are having communication problems using the RS232 interface try lowering the baud rate. The speed of this interface may be influenced by the PC speed and cable type and length.

## CHAPTER 3 CAPTURING BUS ACTIVITY

This chapter describes in detail the setup, control and display of the state and waveform analysis features.

#### 3.0 Operation Overview

Before capturing bus activity click the Setup button to specify any triggers or filters you want use during capture. To start capturing bus activity click on the file icon. The capture will begin and the status indicator will change to ACTIVE. When the trace buffer fills or you click the file icon the sampled data is displayed and the status indicator changes to READING or IDLE.

### 3.1 State Display Overview

The state display presents captured bus activity in a column form and is best used when viewing data transfers. Signals can be moved, inserted, deleted and color and radix defined. Grouped signals such as address can be collapsed and expanded and their range specified.

To open a state display, select File - New or Open - Capture - State. You can also click on the State display icon in the main toolbar.

| Right clic<br>change s<br>Marker Times propertie |                  | sk to<br>signal<br>s | Trace Setups | Power Zoo            | Sta<br>om Sto         | rt and Sam<br>p capture and | mple before<br>d after trigg              | er sta      | alyzer<br>atus |         |               |
|--------------------------------------------------|------------------|----------------------|--------------|----------------------|-----------------------|-----------------------------|-------------------------------------------|-------------|----------------|---------|---------------|
|                                                  |                  |                      | 1            |                      |                       |                             | 2                                         |             |                |         |               |
|                                                  | Trace ·          | test2                |              |                      |                       |                             |                                           |             |                |         | _ 🗆 🗙         |
|                                                  | <b>■</b> →▲· 62. | 40us <b>■→T</b>      | 91.51us 🔺    | <b>T</b> 29.11us     | <u>S</u> etup address | • ?                         | £ 🔎                                       | 👳 👳 0000100 |                | 10 L1   | SAVED         |
|                                                  | SAMPLE           | COMMAND              | ADDRESS32    | DATA32               | AM                    | TIME                        | DELTA                                     | BUS DOCTOR  | AM[5:0]        | BR[3:0] |               |
| Г                                                | -11              | Write                | 0047FFEA     | 55555555             | A32 SUPV DATA         | 10.54us                     | C                                         |             | OD             | F       | 55555         |
|                                                  | -10              | Write                | 0047FFEC     | 55555555             | A32 SUPV DATA         | 11.20us                     |                                           |             | OD             | F       | 55555         |
|                                                  | -9               | Write                | 0047FFEE     | 55555555             | A32 SUPV DATA         | 12.01us                     |                                           |             | OD             | F       | 5555 <u>5</u> |
|                                                  | -8               | Write                | 0047FFF0     | 55555555             | A32 SUPV DATA         | 8.775us                     |                                           |             | OD             | F       | 55555         |
| L                                                | - 7              | Write                | 0047FFF2     | 55555555             | A32 SUPV DATA         | 9.405us                     |                                           |             | OD             | F       | 55555         |
| L                                                | -6               | Write                | 0047FFF4     | 55555555             | A32 SUPV DATA         | 10.06us                     | 62.40us                                   |             | OD             | F       | 55555         |
| L                                                | - 5              | Write                | 0047FFF6     | 55555555             | A32 SUPV DATA         | 10.72us                     |                                           |             | OD             | F       | 55555         |
| 1                                                | - 4              | Write                | 0047FFF8     | 55555555             | A32 SUPV DATA         | 11.38us                     |                                           |             | OD             | F       | 55555         |
|                                                  | -3               | Write                | 0047FFFA     | 55555555             | A32 SUPV DATA         | 12.04us                     |                                           |             | OD             | F       | 55555         |
|                                                  | -2               | Write                | 0047FFFC     | 55555555             | A32 SUPV DATA         | 9.045us                     |                                           |             | OD             | F       | 55555         |
| Ι.                                               | -1               | Write                | 0047FFFE     | 55555555             | A32 SUPV DATA         | 9.705us                     |                                           |             | 0D             | F       | 55555         |
|                                                  | 0                | Write                | 00480000     | 55555555             | A32 SUPV DATA         | 10.36us                     | т                                         |             | OD             | F       | 55555         |
|                                                  | 1                | Write                | 00480002     | 55555555             | A32 SUPV DATA         | 11.02us                     |                                           |             | OD             | F       | 55555         |
| L                                                | 2                | Write                | 00480004     | 55555555             | A32 SUPV DATA         | 11.68us                     |                                           |             | OD             | F       | 55555         |
| L                                                | 3                | Write                | 00480006     | 55555555             | A32 SUPV DATA         | 8.505us                     |                                           |             | OD             | F       | \$5555        |
| L                                                | 4                | Write                | 00480008     | 55555555             | A32 SUPV DATA         | 9.165us                     |                                           |             | OD             | F       | 55555         |
| L                                                | 5                | Write                | 0048000A     | 55555555             | A32 SUPV DATA         | 9.975us                     |                                           |             | 0D             | F/      | 55555         |
|                                                  | •                | 1                    |              |                      |                       |                             |                                           |             |                | 1       | Þ             |
| Signal scroll bar                                |                  | Trig                 | ger marker   | Marker<br>Left click | 1<br>K                | M<br>R                      | Marker 2<br>Right Click Sample scroll bar |             |                |         |               |

#### 3.2 Waveform Display Overview

The timing display represents trace data as waveforms for timing analysis. A numeric value is provided on top of each waveform. As in the state display, signals can be moved, inserted, deleted and color and radix defined. Grouped signals such as address can be collapsed and expanded and their range specified. A zoom is provided to get a better look at waveform relationships.

To open a waveform display, select File - New or Open - Capture - Waveform. You can also click on the Waveform display icon in the main toolbar.



| Right click to<br>change signal<br>properties Marker |                       | ïmes        | Trace Se          | tups                 | Power  | Zoom S   | tart and<br>top captu  | Sam<br>re and | ple before<br>after trigger | Analyzer<br>status |
|------------------------------------------------------|-----------------------|-------------|-------------------|----------------------|--------|----------|------------------------|---------------|-----------------------------|--------------------|
| 📕 Trace - te                                         | est2                  | 10          |                   |                      |        |          |                        |               |                             |                    |
| ■→▲· 17.670                                          | us <b>∎→T</b> 40.38us | ▲→T 22.7    | 1us <u>S</u> etup | address              | - 2    | 2 💷 🔎    | <u>Go</u>              | 0000100       | +▼→ 0000100                 | L1 SAVED           |
| Signal                                               | Value                 | 1           | r .               |                      | 1      | •        | 17.67us-               |               |                             |                    |
| COMMAND                                              | Write                 |             |                   |                      |        | Write    |                        |               |                             | <u> </u>           |
| ADDRESS32                                            | 00480008              |             | 00480000          | 0048                 | 30002  | 00480004 | 4 00                   | )480006       | 00480008                    | 0048000A           |
| DATA32                                               | 55555555              |             |                   |                      |        | 5555555  | 5                      |               |                             |                    |
| AM                                                   | A32 SUPV DATA         |             |                   |                      |        |          |                        |               |                             |                    |
| AM[5:0]                                              | OD                    |             |                   |                      |        | OD       |                        |               |                             |                    |
| SYSRESET                                             | 1                     |             |                   |                      |        |          |                        |               |                             |                    |
| BR[3:0]                                              | F                     |             |                   |                      |        | F        |                        |               |                             |                    |
| BBSY                                                 | 0                     |             |                   |                      |        |          |                        |               |                             | /                  |
| BERR                                                 | 1                     | 1           |                   |                      |        |          |                        |               |                             |                    |
| DTACK                                                | 0                     |             |                   |                      |        |          |                        |               |                             |                    |
| IRQ[6:0]                                             | 7F                    |             |                   |                      |        | 7F       |                        |               |                             |                    |
| IACK                                                 | 1                     |             |                   |                      |        |          |                        |               |                             |                    |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                |                       |             |                   |                      |        |          |                        |               |                             |                    |
| Signal scr                                           | roll bar 1            | rigger mark | er                | Marker<br>Left click | 1<br>k |          | Marker 2<br>Right Clic | k             | Sample sc                   | roll bar           |

## 3.3 VME Bus Signal Names

The name of each bus signal is displayed on the top of each column in the state display and on the left of each row in the waveform display. The signal names are defined as follows:

| Signal Name | Default  | Description                                                                                       |
|-------------|----------|---------------------------------------------------------------------------------------------------|
| _           | Value    |                                                                                                   |
| Sample      | Decimal  | Every time the analyzer captures bus activity a sample number is                                  |
|             |          | assigned to the captured data. Sample number zero is the trigger sample.                          |
|             |          | Positive sample numbers occur after the trigger. Negative sample                                  |
|             |          | numbers occur before the trigger.                                                                 |
|             |          | (Note: Although this is not displayed in the waveform display it can be                           |
|             |          | inserted)                                                                                         |
| Command     | Mnemonic | Indicates if the transfer is a Read, Write or Interrupt. Based on the                             |
|             |          | WRITE* and IACK* signals. Displays "Interrupt" if the IACK* signal is                             |
|             |          | low, otherwise displays "Write" if the WRITE* signal is low or "Read"                             |
|             |          | if this signal is high.                                                                           |
| Address32   | Hex      | Decoded 32 bit address. Displays only the valid address bits on A[31:1]                           |
|             |          | used during a transfer based on the address modifier. Decoded addresses include A16, A24 and A32. |
| Data32      | Hex      | Decoded 32 bit data. Displays only the valid data bits on D[31:0] used                            |
|             |          | during a transfer based on the LW, DS and A1 signals. Decoded data                                |
|             |          | transfers include single odd and even, double, quad, read/write/modified                          |
|             |          | (RWM), unaligned, multiplexed and block.                                                          |
| Address64   | Hex      | Decoded 64 bit address. Displays only the valid address bits on AD[63:1]                          |
|             |          | used during a transfer based on the address modifier. Decoded addresses                           |
|             |          | include A16, A24, A32, A40 and A64.                                                               |
| Data64      | Hex      | Decoded 64 bit data. Displays only the valid data bits on AD[63:0] used                           |
|             |          | during a transfer based on the LW, DS and A1 signals. Decoded data                                |
|             |          | transfers include single odd and even, double, quad, read/write/modified                          |
|             |          | (RWM) ), unaligned, multiplexed and block.                                                        |
| AM          | Mnemonic | Decoded address modifier. Displays the type of transfer based on the                              |
|             |          | address modifier signals. These include A16, A24, A32, A40, A64, BL1,                             |
|             | Desires  | MBL1, 2eVME, 2eSS1, supervisory, program and non-privileged access.                               |
| IIME        | Decimal  | The time from the previous sample to the current sample. This time is                             |
|             |          | stored in the trace buller for every sample and has a range from                                  |
|             | Dagimal  | The time from one selected sample to enother selected sample. You select                          |
| DELIA       | Decimal  | a sample by applying a time marker. To select one time marker left click                          |
|             |          | directly on a sample in the state or waveform display. To select another                          |
|             |          | time marker right click on another sample A line is drawn between the                             |
|             |          | two samples and the time difference is displayed in the DFI TA column                             |
|             |          | in the state display or at the top of the waveform display                                        |

| ACCUM                                    | Decimal  | The accumulated time from the trigger sample. This time is calculated by adding the individual sample times in the TIME field. Times are positive after the trigger and negative before the trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bus Doctor                               | Mnomonio | When an anomaly is detected a description of the anomaly is displayed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Bus Doctor                               | Whemome  | The anomaly massages are described in the anomaly section of this Users                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                          |          | Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| AM[5:0]                                  | Uov      | The bug state of the six AM signals. The default value is in herodocimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $\frac{\text{AM}[5.0]}{\text{AD}[62.0]}$ |          | The bus state of the address and data bus AD[31:0] are the address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| AD[03.0]                                 | TIEX     | signals and $\Delta D[62:22]$ are the data signals. It is sometimes useful to use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                          |          | this instead of the decoded address and data to examine all the signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                          |          | involved in a transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| CVCDECET                                 | Dinory   | The state of the system reset signal: SVSDESET*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DD[2:0]                                  |          | The state of the bus request signals: <b>PD0* PD1* PD2* PD2*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| BC[3:0]                                  |          | The state of the bus grant signals: BC0* BC1* BC2* BC3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                          | Dinory   | The state of the bus busy signal: BUSY*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                          | Dinary   | The state of the bus clear signal: DOS 1 <sup>-1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| DEDD                                     | Dinary   | The state of the bus error signal, DEDD*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| DTACK                                    | Binary   | The state of the base schwards day size she DTACK*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                          | Binary   | The state of the bus acknowledge signal; DTACK*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| IRQ[0:0]                                 | Hex      | The state of the interrupt signals; IRQ/*, IRQ6*, IRQ5*, IRQ4*, IRQ5*, I |  |
|                                          |          | $1RQ2^{*}$ , $1RQ1^{*}$ . Note that the analyzer names the interrupt signals from 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IACIZ                                    | D'       | to 0 and the VME bus specification names them from 7 to 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| IACK                                     | Binary   | The state of the interrupt acknowledge signal; IACK*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| IACKI                                    | Binary   | The state of the interrupt acknowledge daisy chain signal; IACKIN*.<br>Note that IACKIN* is connected to IACKOUT* on the analyzer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| AS                                       | Binary   | The state of the address strobe signal; AS*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| WRITE                                    | Binary   | The state of the write signal; WRITE*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| DS[1:0]                                  | Hex      | The state of the data strobe signals; DS1*, DS0*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| LWORD                                    | Binary   | The state of the long word signal; LWORD*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| RETRY                                    | Binary   | The state of the retry signal; RETRY*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| RESP                                     | Binary   | The state of the response signal; RESP*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| FAIL                                     | Binary   | The state of the fail signal; FAIL*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ACFAIL                                   | Binary   | The state of the ac fail signal; ACFAIL*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CLK                                      | Binary   | The state of the clock signal; SYSCLK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| EXT[7:0]                                 | Hex      | The state of the 8 external input signals; EXT[7:0]. These signals are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                          |          | input through a connector on the analyzer's front panel and have weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                          |          | pull up resistors of approximately 100K ohm The input voltage range is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                          |          | 0 to 5 volts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

#### 3.4 Signal Properties

Signals in the state and waveform display have many properties and functions.

*Moving* – Click on a signal and drag it to another position

*Sizing* – Drag the edge of a signal box to size the signal field

*Color* – Right click on the signal name and select color to change the color of the data displayed

Base - Right click on the signal name and select base (Hex, Octal, Binary) to change the radix

*Change* - Right click on the signal name and select Change Signal to change to another signal

*Expand* - Right click on the signal name and select Expand to expand a bussed signal into individual signals.

*Collapse* – Select a number of signals with the same bus name (i.e. AD[0], AD[1], AD[2]). Two methods to select multiple signals are:

- 1. Hold the Ctrl key with the mouse to select more then one signal
- 2. To select a range of signals, click on one signal then hold the Shift key and select another signal

Right click on one of the selected signal names and select Collapse to collapse them into a single bussed signal.

Insert - Right click on the signal name and select Insert to insert a new signal

Delete - Right click on the signal name and select Delete to remove the signal

*Insert Blank* - Right click on the signal name and select Insert Blank to insert a blank field. This is useful for separating groups of signals for better clarity.

### 3.5 Control Bar

| 📕 Trace - Trigger2              |           |           |         |         |
|---------------------------------|-----------|-----------|---------|---------|
| ■→▲ 99.40us ■→ <b>T</b> 25.85us | ▲→T Setup | ' £ 🔎 💁 🗄 | 0000100 | L1 IDLE |

The control bar provides information and control while capturing and displaying trace data.

Go Button – Starts the capture of bus activity.

*Stop Button* – Stops the capture of bus activity and displays captured trace data. A Stop occurs automatically if the trace buffer fills.

*Number of Samples Before and After the Trigger* – When capturing bus activity these values are constantly updated to reflect the amount of data stored in the trace buffer. When reading trace data this display indicates your position within the trace buffer.

Analyzer Status – Indicates the current state of the analyzer.

IDLE- not capturing or reading trace data

ACTIVE – capturing trace data

READING - reading trace data

*Power Zoom Button* – Opens a high speed timing window that displays trace data around the trigger event.

*Setup Button and Drop Down List* – Click the Setup button to modify a new or saved setup. The drop down list is a quick way to select previously saved setups.

*State/Waveform Button* – This button changes the window between state and waveform displays. It also allows you to open another state or waveform display, which contains the same data as the first display and whose position is linked together.

*Marker Time Display* – The time from the Trigger to Marker1, Trigger to Marker 2 and Marker1 to Marker 2 is displayed.

#### 3.6 Setups

The type of information captured in the trace buffer is controlled by setup information. Clicking the Setup button in the control bar allows you to specify this information.

| Trace              | Setup                 |                    |           |     |           |          |      |            |              |                                                |         | ×                            |
|--------------------|-----------------------|--------------------|-----------|-----|-----------|----------|------|------------|--------------|------------------------------------------------|---------|------------------------------|
| Setu<br>Nam<br>Des | ip<br>ne<br>cription  | address<br>address |           |     | ×         | ]<br>]   |      | S          | Setup Wizard | <u>D</u> pen<br><u>S</u> ave<br><u>D</u> elete |         | OK<br>Cancel<br><u>H</u> elp |
| Eve                | nts                   |                    | d         |     |           |          |      |            |              |                                                | 4       |                              |
|                    | /ENT                  | COMMAND            | ADDRESS32 | ->  | DATA32    | =<>      | AI   | v <b>i</b> | AD[6         | 63:0]                                          | AM[5:0] |                              |
|                    | E1:                   | All                | XX480000  | Any | XXXXXXXXX | Any      | A1   | 1          |              | XX480000                                       | XX      | Nor                          |
|                    | E2:                   | All                | XXXXXXXXX | Any | XXXXXXXXX | Any      | Al   | 1          | XXXXXXXXX    | XXXXXXXXX                                      | XX      | Nor                          |
|                    | E3:                   | A11                | XXXXXXXXX | Any | XXXXXXXX  | Any      | A1   | 1          |              | XXXXXXXX                                       | XX      | Nor                          |
|                    | E4:                   | A11                | XXXXXXXX  | Any |           | Any      | A1   | 1          | XXXXXXXXX    | XXXXXXXXX                                      | XX      | Not 🗸                        |
| - Trac<br>San      | e Contro<br>nple Cloc | k Sync             | •         |     | Trigger I | Position | 50%  | •          | Power Zoom   | Sample Clock                                   | 3.75 ns | •                            |
| L1:                | IF _                  |                    | E1        |     | OCCURS    | 1        | THEN | Goto L1    | , Trigger    |                                                |         | -                            |
|                    | STORE                 |                    | All       |     |           |          | ELSE | Got        | o L1         | ]                                              |         |                              |
| L2:                | IF _                  | 1                  | None      |     | OCCURS    | 1        | THEN | Got        | o L1         |                                                |         |                              |
|                    | STORE                 |                    | None      |     |           |          | ELSE | Got        | o L1         |                                                |         |                              |
| L3:                | IF                    | 1                  | None      |     | OCCURS    | 1        | THEN | Got        | o L1         | 1                                              |         |                              |
|                    | STORE                 |                    | None      |     |           |          | ELSE | Got        | o L1         |                                                |         |                              |
|                    |                       |                    |           |     |           |          |      |            |              |                                                |         | <b>_</b>                     |

The setup window is divided into 3 main sections: Setup Utilities, Events, and Trace Control.

*Setup Utilities* – These are general setup functions:

- 1. Specify a setup Name
- 2. Give a setup Description
- 3. Open, Save and Delete setups
- 4. Use the Setup Wizard to assist in defining setups. The setup wizard automatically fills in the trace setup event and control sections for simple trigger and store conditions. Simply check the type of cycle. You can also include address and data values.

| Setup Wizar                                                     | Setup Wizard - Trace 🛛 🔀         |  |  |  |  |  |  |
|-----------------------------------------------------------------|----------------------------------|--|--|--|--|--|--|
| _ What do you                                                   | want to trigger on?              |  |  |  |  |  |  |
| Cycle:                                                          | Memory                           |  |  |  |  |  |  |
| Direction:                                                      | 🗆 Read 🔲 Write 🗖 Interrupt 🔽 All |  |  |  |  |  |  |
| Address:                                                        |                                  |  |  |  |  |  |  |
| Data:                                                           |                                  |  |  |  |  |  |  |
|                                                                 |                                  |  |  |  |  |  |  |
| -What do you                                                    | want to store?                   |  |  |  |  |  |  |
| Cycle:                                                          | Memory                           |  |  |  |  |  |  |
| Direction:                                                      | 🗆 Read 🔲 Write 🗖 Interrupt 🔽 All |  |  |  |  |  |  |
| Address:                                                        |                                  |  |  |  |  |  |  |
| Data:                                                           |                                  |  |  |  |  |  |  |
|                                                                 |                                  |  |  |  |  |  |  |
| You can specify an address or data range as follows: 100 to 200 |                                  |  |  |  |  |  |  |

*Events* – Events are bus conditions that are of interest to you. They are used in the trace controls for triggering, trace qualification and decision-making. Each event specifies a complete set of bus signals and their state. Click on a field in the event section to change a signal. Grouped signals such as AD[63:0] open a dialog box while individual signals rotate through preset selections when clicked. The signal fields can be moved, sized and changed to customize the event display. See Signal Properties in section 3.4 for a complete list of signal properties.

*Trace Control* – Trace controls specify how the analyzer captures bus activity. This multi-level structure provides a flexible way to setup simple or complex trace control.

Each level has the following fields:

**IF:** This field defines an event or logical combination of events that you want to look for.

| 6                                  |                   |
|------------------------------------|-------------------|
| Trace Expression                   | ×                 |
| E1+E2.(E3+E4)                      | <u>C</u> lear     |
| E1 E2 E3 E4 E5 E6 E7 E8            | <u>B</u> ackspace |
| . (AND) + (OR) ~ (NOT, x (XOR) ( ) |                   |
| <u>ALL</u> <u>N</u> ONE Cancel     | ОК                |

When you select the IF field an expression generator helps you construct an event condition.

**OCCURS**: The number of times the event occurs.

| Occurrence Count                   | ×      | 1 |
|------------------------------------|--------|---|
| Enter a value between 1 and 65535: | OK     |   |
| <u>u</u>                           | Cancel |   |

**THEN:** If the event in the IF field occurs the number of times in the OCCURS field you can jump to a level and trigger.



**ELSE:** If the event in the IF field DOES NOT occur you can jump to a level and trigger.

**STORE:** An event or logical combination of events specifies what to store in the trace buffer.

The trace control section also sets the sample clocks and trigger position.



Synchronous Sampling

Clk samples on the internal analyzer clock. The default is 33 Mhz.

*Sync* samples addresses on the negative edge of the AS signal and data and all other signals on the negative edge of the DTACK or the BERR signal

Transfer samples on the system clock during a data transfer

The remaining selections are periodic intervals based on an analyzer clock.



## Trigger Position

The trigger position defines the amount of information stored in the trace buffer before and after a defined event called the trigger. Once a trigger is encountered a trigger position of 0% stores all events starting at the beginning of the trace buffer.

| 3.75 ns  | • |
|----------|---|
| 1.875 ns |   |
| 3.75 ns  |   |
| 7.5 ns   |   |
| 15 ns    |   |
| 30 ns    |   |
| 60 ns    |   |
| 120 ns   |   |
| 240 ns   |   |

#### Power Zoom Sample Clock

The power zoom sample clock specifies the sample rate of the high speed trace buffer. This buffer samples bus signals around the trigger point and is displayed by clicking on the power zoom button in the state or waveform display.

## 3.7 Time Markers

Time measurements on the state and waveform displays are performed using markers. Left click on data in the display window to place one marker. Right click to place another marker. The time between the markers is displayed on the data display. The control bar in the state and waveform window also shows the time from the trigger to each marker and from marker to marker.



#### 3.8 Searching and Jumping

Searching – To find information in the trace buffer use the search features on the main tool bar. After defining search criteria you can search forward or backward through the trace buffer. The search starts at the  $1^{st}$  marker position.

\*\*

Jumping – Use the jump features on the main tool bar to quickly move to specific samples in the trace buffer. Jump to the start, end, trigger, marker 1 and marker 2.

#### 3.9 Power Zoom

The power zoom is a small high speed trace buffer that captures bus signals around the trigger event. To

open this window click the power zoom button  $\swarrow$  in the state or waveform display. The power zoom window has the same features as the waveform display such as moving, inserting, deleting and changing the signals in the display. Timing measurements can be made using markers by right and left clicking directly on the display.

| 📕 Power Zo | om - Trigger2           |                    |                            | IX       |
|------------|-------------------------|--------------------|----------------------------|----------|
| ■→▲ 48.75  | ns <b>■→T</b> 30.00ns 🔺 | → <b>T</b> 78.75ns | 0000255 ↔T→ 0000255 L1 SAV | ED       |
| Signal     | Value                   | <del>.</del>       | 48.75ns                    |          |
| CLK        | 1                       |                    |                            | <b>_</b> |
| COMMAND    | Interrupt               |                    |                            |          |
| ADDRESS32  | FFFFFFF                 |                    |                            |          |
| DATA32     | 00000000                |                    |                            |          |
| AM         | A64 MBLT                |                    |                            |          |
| AD[63:0]   | 00000000 FFFFFFF        |                    |                            |          |
| AM[5:0]    | 00                      |                    |                            |          |
| SYSRESET   | 1                       |                    |                            |          |
| BR[3:0]    | F                       |                    | F                          |          |
| BBSY       | 0                       |                    |                            |          |
| BERR       | 1                       |                    |                            |          |
| DTACK      | 1                       |                    |                            |          |
| IRO[6:0]   |                         |                    |                            |          |
|            |                         |                    |                            | •        |

#### 3.10 Saving Captured Data

To save trace data, select File and Save or Save As or click the Save icon in the main tool bar. Trace data is saved in a text format that can be opened later or read in a word processor, database or spread sheet. The file name is given a .tra file extension.

#### 3.11 Printing

To print state and waveform data select File and Print or click the print icon 🗐 in the main tool bar.

## 3.12 Capturing 2eVME and 2eSST

In VME64x systems that implement 2eVME or 2eSST protocols the analyzer must be set to capture these protocols. The VME850 does not automatically determine which protocol is used. To set the protocol type select Utilities from the main menu, then select Bus Configuration. Select the protocol from the Mode field drop down list that is used in the VME system.

| Bus Configuration 🛛 🛛 🔀                      |                                     |              |  |  |  |  |  |
|----------------------------------------------|-------------------------------------|--------------|--|--|--|--|--|
| Bus<br>Mode<br>Width<br>Voltage<br>Frequency | 2eVME<br>32 bit<br>5.0V<br>0<br>MHz | OK<br>Cancel |  |  |  |  |  |
|                                              |                                     |              |  |  |  |  |  |

#### CHAPTER 4 PERFORMANCE ANALYSIS

Time graphs and histograms give an overview of system performance, bottlenecks and problem areas.

There are 5 performance analysis measurements:

- 1. Utilization Computes the percentage of time a signal is active.
- 2. Transfer Rate Computes the speed of signals in MB/sec.
- 3. Latency Computes the delay of signals in microseconds.
- 4. Burst Distribution Computes the amount of data transferred in a burst transfer.
- 5. Statistics Counts the number of occurrences of selected signals.

Dedicated hardware counters accumulate occurrences of selected items. The counter data is plotted on a real time graph. The minimum, maximum and average values are computed from this data and displayed on a separate bar chart. To open a performance window click File – New – Performance and the measurement.



#### 4.0 Operation Overview

To start the performance measurements click the **b** icon. The status indicator changes from **IDLE** to

**ACTIVE**. To stop a measurement in progress click the *icon* icon. You can review the real time data by using the scroll bar under the time graph.

#### 4. 1 Performance Display

The performance window in the AnalyzeIt software allows the user to select the measurement items and view both real time and historical data. The time graph displays the values read and computed each time the 8 hardware counters are read. The Min/Max/Average graph uses the data collected in the time graph to compute the average, minimum and maximum values over time.

Up to 8 measurement items are displayed on the top of the window. A color is assigned to each item and used to identify the item in the graphs below. Next to each item name is a value that indicates the actual data value graphed. The user can display Instantaneous, Average, Minimum or Maximum values by selecting a choice in the VALUE drop down box at the top of the window. This can be used to obtain a more exact value then read from the graph.

#### 4.2 Setup

Click the setup button to select items for performance analysis and other options. Selected items can include bus signals, group signals and address ranges. You can also select an update interval which is the time period that the hardware counters are read and calculations performed on the real time data.

| Perfor            | mance Setup       |               |                                      |                                                | ×           |  |
|-------------------|-------------------|---------------|--------------------------------------|------------------------------------------------|-------------|--|
| Name              |                   |               | Display<br>Update Interval<br>100 ms | <u>B</u> ar Chart<br>Pie Chart<br><u>G</u> rid | tup Wizard  |  |
| _ <sup>Sele</sup> | ct Items          | Cuela         |                                      | - D                                            | Color Code  |  |
|                   | Item              | Lycie         | Address                              | is Hange<br>1                                  | Lolor Style |  |
| A                 | Bus Busy 💌        |               | 0000000000000000                     |                                                |             |  |
| В                 | Bus Idle 🗾 💌      | All 💌         | 000000000000000                      |                                                |             |  |
| С                 | Transfers 💌       | Al 💌          | 0000000000000000                     |                                                |             |  |
| D                 | Addr Phase 💌      | Al 💌          | 0000000000000000                     |                                                |             |  |
| E                 | Data Phase 💌      | Al 💌          | 0000000000000000                     |                                                |             |  |
| F                 | Wait States 💌     | Al 💌          | 0000000000000000                     |                                                |             |  |
| G                 | Master Efficier 💌 | Al 🔹          | 0000000000000000                     |                                                |             |  |
| н                 | Target Efficier 💌 | Al 🔹          | 0000000000000000                     |                                                |             |  |
|                   |                   |               |                                      |                                                |             |  |
| Loa               | ad <u>S</u> ave   | <u>C</u> lear | Help                                 | Cancel                                         | OK          |  |

#### 4.3 Utilization Measurement

To open a Utilization display, select File - New or Open - Performance – Utilization or click on the Performance display icon in the main toolbar.

Utilization measurements compute the percentage of time a signal is active. This measurement identifies the resources that are using the bus. These can include address usage, command type and overall idle and busy times.

The following signal combinations are used in the Utilization measurements. Each signal is counted over the specified sample update interval. A total count as well as each item count is read and a percentage of the total time an item is active is computed.

| Measurement       | Signals Used               | Description                            |
|-------------------|----------------------------|----------------------------------------|
| Bus Busy          | AS low                     | When the AS signal is active (low) the |
|                   |                            | bus is busy                            |
| Bus Idle          | AS high                    | When the AS signal is not active       |
|                   |                            | (high) the bus is idle                 |
| Transfers         | AS low                     | During transfers the address strobe    |
|                   |                            | (AS) signal is active (low)            |
| Address Phase     | AS low, DS0 high, DS1 high | The time between the address phase     |
|                   |                            | starting and the data phase starting.  |
| Data Phase        | DTACK low                  | The duration of the data transfer      |
| Wait State        | AS low, DTACK high         | The delay from address to data         |
| Master Efficiency | BUSY low, AS high          | The delay from the master acquiring    |
|                   |                            | the bus to presenting an address       |
| Target Efficiency | DS(x) low, DTACK high      | The delay from the target entering the |
|                   |                            | data phase to the actual data transfer |

#### VME Utilization Measurement Signals

## 4.4 Transfer Rate Measurement

To open a Transfer rate display, select File - New or Open - Performance - Transfer Rate.

The transfer rate measurement measures in MB/s the speed of data transfers. The total number of data transfers are counted over the specified time interval ("ALL" item). Data transfers are also counted for each bus grant ("GNT" items) which can provide data transfer rates for a specific master. A total time counter is read as well as the item counts and a transfer rate is computed. The total time counter is enabled only during bus transfers. Any item can be further restricted to an address range and cycle type in the setup window.

Transfer Rate = Data Count / Total Time Count (during transfers)

| <sup>–</sup> Measurement | Signals Used   | Description             |
|--------------------------|----------------|-------------------------|
| All                      | DTACK, AS      | DTACK, AS low           |
| GNT0                     | BG0, DTACK, AS | When BG0, DTACK, AS low |
| GNT1                     | BG1, DTACK, AS | When BG1, DTACK, AS low |
| GNT2                     | BG2, DTACK, AS | When BG2, DTACK, AS low |
| GNT3                     | BG3, DTACK, AS | When BG3, DTACK, AS low |

#### 4.5 Latency Measurement

To open a Latency display, select File - New or Open - Performance - Latency.

The efficiency of data transfers in a system depends upon the latencies involved. Measurements are taken of master, target, address, data and arbitration to provide a look at latencies that slow a bus down. Four different latencies are measured and computed.

- 1. Master the amount of time between a master sending an address and data. This time is measured from the master driving address strobe (AS) to it driving data strobes (DS).
- 2. Target (Init) the amount of time it takes for a target to respond to a master. This time is measured from the masters data strobe (DS) to the targets data acknowledge (DTACK).
- 3. Target the amount of time between target data transfers. This delay is measured between data acknowledge (DTACK) pulses. This is useful to determine the delay of burst transfers.
- 4. Arbitration the amount of time it takes for the system arbiter to grant access to a master on the bus. This delay is measured from the bus request (BR) to bus grant signal (BG).

| Measurement   | Signals Used | Description                         |
|---------------|--------------|-------------------------------------|
| Master        | AS, DS       | Delay between address and data      |
| Target (Init) | DS, DTACK    | Delay from data strobe to data      |
| Target        | DS, AS       | Delay between data in burst         |
| Arbitration   | BR, BG       | Delay from bus request to bus grant |

#### 4.6 Burst Distribution

To open a Burst Distribution display, select File - New or Open - Performance - Burst Distribution.

The amount of data during block transfers is measured and displayed. During block transfers multiple bytes of data are read or written on the bus with a single cycle. Efficient systems are designed to send large amounts of data with little overhead. This overhead includes system arbitration and addressing. The burst distribution measurement counts the number of data bytes transferred during a cycle. Other items such as memory read and memory write can be selected in the setup window.

| Measurement | Signals Used  | Description                          |
|-------------|---------------|--------------------------------------|
| Cycle : All | AS, DS        | Counts number of DS strobes during a |
|             |               | transfer                             |
| Cycle : Mem | AS, DS, WRITE | Counts number of DS strobes during a |
|             |               | memory read or write transfer        |

#### 4.7 Statistics

To open a Statistics display, select File - New or Open - Performance - Statistics.

Statistics can be obtained for any bus signal or group of signals. For example the number of memory reads and memory writes to an address or address range can be counted. Each item is counted over the specified sample update interval. A total count as well as each item count is read and a percentage of the

total time an item is active is computed. Statistics on any signal and signal state can be obtained by setting up the events (E1 thru E8) in the trace setup window and selecting them in the performance setup window as an item. Memory write, memory read and Interrupt cycles can also be selected.

| Measurement    | Signals Used | Description           |
|----------------|--------------|-----------------------|
| Cycle : Mem Rd | WRITE, AS    | WRITE is high, AS low |
| Cycle : Mem Wr | WRITE, AS    | WRITE is low, AS low  |

#### 4.8 Saving and Loading Performance Data

Performance data can be saved to a file by clicking the Save button. To look at previously saved data click the Load button. Saved performance files have a .per extension. The data is saved in an ASCII file that can be read with word processor or spreadsheet software. The saved performance file starts with a summary of the performance setup and results which includes the number of samples taken and the items measured. This is followed by the performance data which starts with the sample number followed by the results for the 8 items measured.

#### 4.9 Performance Hardware Overview

The performance measurement hardware consists of 9 hardware counters with a common clock. Eight of these counters are enabled by selecting a combination of bus signals in a defined state. The ninth counter is always enabled and contains the total count. The counters are read periodically and a calculation is performed that results in the percentage of time the selected signals were active. Each time the counters are read an average is computed as well as a minimum and maximum value determined based on previous readings.



#### Master

#### CHAPTER 5 MASTER

The Master functions perform memory data transfers across the bus. The user has complete control over many aspects of the transfer including:

Address:address modifier, size and rangeData:size, cycle, type and valueCommand:read, write, test, compare, verify

The analyzer reads from other devices on the bus and displays the data in the master window or saves it to a file. During write transfers the analyzer writes a specified value or the data from a file to a device on the bus. The analyzer can perform these transfers in single or block cycles.



#### 5.0 Operation Overview

Before initiating a transfer specify the fields in the address, data and command sections of the master window. To start a transfer click on the **Go** icon. The transfer will begin and the status indicator will change to **ACTIVE**. When the transfer completes the status indicator changes back to **IDLE**.

#### 5.1 Data Display

When the analyzer reads data on the bus the data is displayed in a scrollable the master window. The data display is divided into 3 sections:

Address – the starting address of the data line in hexadecimal.

Hex Data – the data read from the bus in hexadecimal, 16 bytes per line.

ASCII Data – the ASCII equivalent of the hex data, a period is a non-ASCII character.

 00000000
 7d 10 b2 80 25 f2 24 e6 b0 4d 6c 11 f6 ae 27 df
 }...%.\$. Ml...'.

 000000010
 d1 94 30 2d d0 79 27 80 ba 67 47 91 ad c0 b8 79
 ...-y'..gG....y

 00000020
 1f 5d d4 08 83 a9 6c 1a f2 ea 8c 58 78 5f d7 50
 ....l....Xx\_.P

 00000030
 74 45 fa 4b bc 90 31 c2 d6 65 7f e2 07 fd 92 0c
 tE.K..1..e.....

 00000040
 87 31 d6 9f a7 32 d6 1f 1c bd 50 ef 48 55 23 ba
 .l...@\$....

 00000050
 d4 b4 99 be 40 24 00 0f cd d9 35 1d 8d 03 1d 73
 ....@\$....

To view more data use the vertical scroll bar.

#### 5.2 Address Setup

The address setup section specifies the address used for read and writes. The fields are as follows:

AM – Address Modifier

**Size** – 8, 16, 32, 64 bit

**Start** – Starting address in hexadecimal.

End – Ending address in hexadecimal

| Address |                  |
|---------|------------------|
| AM      | 0D               |
| Size    | 32 bit 💌         |
| Start   | 0000000 00000000 |
| End     | 0000000 00000000 |
#### 5.3 Data Setup

The data setup section specifies the data used for reads and writes. The fields are as follows:

**Size** – 8, 16, 32, 64 bit

Cycle – single, burst

Single cycle transfers perform one read or write at a time through the address range. Arbitration takes place for each data transfer of the specified size.

Type – value, file, target

During a bus write command the data used is specified in the Type field.

Value - uses the data in the Value field.

*File* - uses data stored in a data file that may have been previously saved with the Save button in the Master window

Target – uses data in the target memory on the analyzer

Value – data value in hexadecimal

| Data  |                  |
|-------|------------------|
| Size  | 32 bit 💌         |
| Cycle | Single 🔽         |
| Туре  | Value 🔽          |
| Value | 0000000 00000000 |

#### 5.4 Commands

The commands used in the master functions are:

Read – reads data from a target on the bus

Write – writes data to a target on the bus

Verify – writes data to a target and reads it back for verification

Test – writes out test patterns and reads them back for verification

Compare - reads data and compares it with the data specified in the data setup

| Command |   |  |  |  |
|---------|---|--|--|--|
| Read    | - |  |  |  |
| Repeat  | 1 |  |  |  |
|         |   |  |  |  |
|         |   |  |  |  |

#### 5.5 Saving and Loading Data

Read data and setup information can be saved to a file by clicking the Save button. To look at previously saved data click the Load button. Saved master files have a .mst extension.

#### 5.6 Options

No options are available.

Master

### CHAPTER 6 STIMULUS

The analyzer has the ability to generate signal patterns on the bus in response to bus events. These features provide the ability to simulate hardware, inject faults, modify the timing of transfers and control signals directly.

Stimulus is driven onto the bus under control of a 16 level sequencer. At each level any combination of bus signals can be specified along with an activation time and wait time synchronized to the system clock. These levels can then be linked together to form complex stimuli. Initiation of this stimulus can be controlled manually or in response to a bus event.

| Specify Stimulus Condition |                                   |           |                  |                  |         | Start and Stop Stir | mulus Stimul     | us Status |  |
|----------------------------|-----------------------------------|-----------|------------------|------------------|---------|---------------------|------------------|-----------|--|
| • Stimulus                 |                                   |           |                  |                  |         |                     |                  |           |  |
|                            |                                   |           |                  |                  |         |                     | <u>e</u>         | IDLE      |  |
| <b>Stimulus</b>            | Stimulus                          |           |                  |                  |         |                     |                  |           |  |
| STIMULUS                   | COMMAND                           | ADDRESS32 | =<>              | DATA32           | =<>     | AM                  | AD[63:0]         |           |  |
| S1:                        | All                               | XXXXXXXX  | Any              | XXXXXXXX         | Any     | All                 | XXXXXXXX XXXXXXX | x         |  |
| S2:                        | All                               | XXXXXXXX  | Any              | XXXXXXXX         | Any     | All                 | xxxxxxx xxxxxx   | x         |  |
| S3:                        | All                               | XXXXXXXX  | Any              | XXXXXXXX         | Any     | All                 | xxxxxxx xxxxxx   | x         |  |
| S4:                        | All                               | XXXXXXXX  | Any              | XXXXXXXX         | Any     | All                 | xxxxxxx xxxxxx   | x         |  |
|                            | 411                               | 0000000   | L <sub>(</sub> ] |                  | <u></u> | Å11                 |                  | ┈╷╷╴      |  |
|                            |                                   |           |                  |                  |         |                     |                  |           |  |
| EVENT                      | COMMOND                           | ADDRESS32 | =<>              | D0T032           | =<>1    | 0.64                | AD(63:0)         |           |  |
| EVENT                      | ۵11 فال                           |           | 4nv              | *****            | 4nv     |                     |                  | ╤╪╤╡      |  |
| E1.                        | 611                               | *****     |                  | *******          | l ány   | 611                 |                  |           |  |
|                            |                                   |           |                  |                  | 1 0113  |                     |                  |           |  |
|                            |                                   | ı         |                  |                  |         |                     |                  |           |  |
| Control                    |                                   |           |                  |                  | 1       |                     |                  |           |  |
| SLI: IF                    | All                               |           | JULUH:           | , <mark> </mark> |         | EN Goto S           |                  |           |  |
| STIMU                      | LUS                               | S1        |                  |                  | EL      | SE Goto S           | iL1              |           |  |
|                            |                                   |           |                  |                  |         |                     |                  |           |  |
| SL2: IF                    | None                              |           | OCCURS           | 5 1              | ТН      | EN Goto S           | iL1              |           |  |
| STIMU                      | LUS I                             | None      |                  |                  | EL      | SE Goto S           | iL1              | _         |  |
|                            |                                   |           |                  |                  |         |                     |                  |           |  |
| Load                       | <u>S</u> ave                      |           |                  |                  |         | Options <u>H</u> el | p <u>C</u> lose  |           |  |
|                            |                                   |           |                  |                  | -       |                     |                  |           |  |
| Stin                       | Stimulus Control Event Conditions |           |                  |                  |         |                     |                  |           |  |

#### 6.0 Operation Overview

Specify the stimulus conditions that will drive the bus, the events to look for and use these in the stimulus control. To start stimulus click on the **for** icon. The stimulus will begin and the status indicator will change to **ACTIVE**. To stop the stimulus click the **for** icon. The status indicator changes to **IDLE**.

#### 6.1 Stimulus Conditions

Each stimulus condition specifies which signals drive the bus and their drive level. The drive states are: X - do not drive the bus

- 0 drive the bus to a low state
- 1 drive the bus to a high state

| Г | Stimulus |         |     |            |     |            |     |         |    |         |   |
|---|----------|---------|-----|------------|-----|------------|-----|---------|----|---------|---|
|   | STIMULUS | COMMAND | Ş   | ADDRESS32  | =<> | DATA32     | AM  | AM[5:0] | AS | DS[1:0] |   |
|   | S1:      | A11     | Any | xxxxxxxxxx | Any | xxxxxxxxx  | A11 | XX      | х  | х       |   |
|   | S2:      | A11     | Any | xxxxxxxxxx | Any | xxxxxxxxx  | A11 | XX      | х  | х       |   |
|   | S3:      | A11     | Any | xxxxxxxxx  | Any | xxxxxxxxxx | A11 | xx      | х  | х       |   |
|   | S4:      | A11     | Any | xxxxxxxxx  | Any | xxxxxxxxx  | A11 | xx      | х  | х       | - |
|   | •        |         |     |            |     |            |     | 1       |    | •       |   |

The stimulus signal fields can be moved, sized and changed to customize the stimulus display. See Signal Properties in section 3.4 for a complete list of signal properties.

#### 6.2 Stimulus Events

Stimulus events define bus conditions to look for and are used to control when stimulus conditions are driven onto the bus.

| Events |         |     |            |     |           |     |         |       |   |  |
|--------|---------|-----|------------|-----|-----------|-----|---------|-------|---|--|
| EVENT  | COMMAND | =<> | ADDRESS32  | =<> | DATA32    | AM  | ANOMALY | AM[5: |   |  |
| E1:    | A11     | Any | xxxxxxxxx  | Any | xxxxxxxxx | A11 | None    | XX    |   |  |
| E2:    | A11     | Any | xxxxxxxxxx | Any | xxxxxxxxx | A11 | None    | xx    | - |  |
|        |         |     |            |     |           |     |         |       |   |  |

#### 6.3 Stimulus Control

Stimulus controls specify how the analyzer stimulates bus activity. This multi-level structure provides a flexible way to setup simple or complex stimulus control.

| Contro  | ol      |      |        |   |      |          |          |
|---------|---------|------|--------|---|------|----------|----------|
| SL1: IF |         | All  | OCCURS | 1 | THEN | Goto SL1 | <u> </u> |
| ST      | TIMULUS | S1   |        |   | ELSE | Goto SL1 |          |
|         |         |      |        |   |      |          |          |
| SL2: IF |         | None | OCCURS | 1 | THEN | Goto SL1 |          |
| ST      | TIMULUS | None |        |   | ELSE | Goto SL1 | ~        |

# Each level has the following fields:

**IF:** This field defines an event or logical combination of events that you want to look for.

| Trace Expression                   | ×                 |
|------------------------------------|-------------------|
| E1+E2.(E3+E4)                      | <u>C</u> lear     |
| E1 E2 E3 E4 E5 E6 E7 E8            | <u>B</u> ackspace |
| . (AND) + (OR) ~ (NOT) × (XOR) ( ) |                   |
| ALL NONE Cancel                    | ОК                |

When you select the IF field an expression generator helps you construct an event condition.

**OCCURS**: The number of times the event occurs.

| Occurrence Count                   | ×      |
|------------------------------------|--------|
| Enter a value between 1 and 65535: | ОК     |
| <u>u</u>                           | Cancel |
|                                    |        |

**THEN:** If the event in the IF field occurs the number of times in the OCCURS field you can jump to a level and drive a stimulus condition.

| tion |            |                      | ×                    |
|------|------------|----------------------|----------------------|
| •    | Driv       | e S1                 | •                    |
|      |            |                      |                      |
| Ca   | ncel       |                      | OK 📄                 |
|      | tion<br>Ca | tion The Driv Cancel | tion Trive S1 Cancel |

**ELSE:** If the event in the IF field DOES NOT occur you can jump to a level and drive a stimulus condition.

### 6.3 Saving and Loading Stimulus

Stimulus conditions and controls can be saved to a file by clicking the Save button. To look at previously saved stimulus click the Load button. Saved stimulus files have a .stm extension.

# 6.4 Options

No options are available.

#### CHAPTER 7 CONFIGURATION SCANNING

An automatic scan of configuration space identifies the boards in a system and displays the configuration information. A search is performed of all configuration registers and the results are displayed and decoded for easy identification. The values of the configuration registers are displayed in one window and the decoded meaning in another window. Vendor names, type of board, version numbers, etc. are displayed for easy interpretation.

| Device Configuration                                                                                                                                                                                                                                                                                                        | Header                                                                                                                                                                                                                                                         | Decode                                                                                                                                                                                                                                              | d Header                                                              |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|
| Configuration Space                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                       |               |
| Header                                                                                                                                                                                                                                                                                                                      | O                                                                                                                                                                                                                                                              | Analys                                                                                                                                                                                                                                              | sis                                                                   |               |
| DEMCE ID         VENI           0         0         0         0         0           STATUS         COM           0         0         0         0         0           CLASS CODE         0         0         0         0         0           BIST         HDR TYPE         LAT TIMER         0         0         0         0 | JOR ID         00H           0         0           MAND         04H           0         0           REVID         08H           CACHE SIZE         0CH           10H         10H           18H         18H           20H         20H           20H         28H | Class: IRDA Controller<br>Vendor: Intel<br>Device/Rev ID: 000B.02<br>Command<br>Master Enabled<br>I/O Enabled<br>Memory Enabled<br>Special Cycles<br>Mem WR and INV<br>VGA Snoop<br>Parity Error<br>Stepping Ctrl<br>SERR# Enable<br>Fast Back-Back | : Yes<br>: No<br>: No<br>: No<br>: No<br>: No<br>: No<br>: No<br>: No |               |
|                                                                                                                                                                                                                                                                                                                             | 2CH                                                                                                                                                                                                                                                            | Detected Parity Error                                                                                                                                                                                                                               | : No                                                                  | <b>_</b>      |
| Address 00000000                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                | Read                                                                                                                                                                                                                                                | <u>S</u> ave                                                          | <u>H</u> elp  |
| <u>Find</u> < Back                                                                                                                                                                                                                                                                                                          | <u>N</u> ext >                                                                                                                                                                                                                                                 | <u>Write</u> Options                                                                                                                                                                                                                                | Load                                                                  | <u>C</u> lose |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                       |               |

Find Next Device

#### 7.1 Configuration Header

The configuration header window displays binary configuration data. The first 16 bytes are the same for every device. The Header Type field, in the upper 16 bytes, define the format of the data that follows. The display automatically adjusts the format based on the Header Type field.

#### 7.2 Configuration Analysis

The raw information in the configuration header is analyzed and the results are displayed in an analysis window. The device class and vendor ID is looked up and the other fields are decoded.

#### 7.3 Finding Devices

Several buttons search for devices in the configuration space. The FIND button scans the configuration space to locate the next device. The NEXT and BACK buttons also locate devices before or after the current device.

### 7.4 Saving and Loading Configuration Information

Configuration information can be saved to a file by clicking the Save button. To look at previously saved configurations click the Load button. Saved configuration files have a .cfg extension.

### 7.5 Reading and Writing Configuration

The READ and WRITE buttons provide a convenient way of modifying and displaying configuration space.

#### 7.6 Options

No options are available.

#### CHAPTER 8 TARGET MEMORY

The target memory provides a windowed bus memory that is accessible by other bus masters. The memory can be configured for different addresses, data and responses to a master. The target memory can also be read and written to directly by the analyzer by selecting the target address, data and command and clicking the GO icon.

The target window is divided into 3 sections:

- 1. Display section shows the value of the data in the target memory.
- 2. Bus section controls the bus address, data and responses of the target memory to an initiator.
- 3. Target section allows the user to read and write directly into the target memory from the analyzer.

The target memory is not accessible on the bus until the Enable Target checkbox is checked.

| Bus Address                                                                | Bus Data                                        | Star<br>Analyzer T                                 | t and Stop<br>Farget Comma             | Bus ASC                    | II Data                |                 |
|----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------|------------------------|-----------------|
| 〒 Target                                                                   |                                                 |                                                    |                                        | _                          |                        |                 |
|                                                                            |                                                 |                                                    | <u>60</u>                              |                            |                        |                 |
| 00000000 00 8f 31 ce 9<br>00000010 17 5c 25 2a f<br>00000020 72 59 0e 9a c | )5 7a 59 e4 d<br>ic 71 1e 01 0<br>:7 cc 84 4c d | 11 be 2c db b5<br>12 60 87 91 99<br>1f b9 f3 ec 89 | 82 4d 03<br>9a 2a a9 .\<br>24 75 3c rY | 1zY,M.<br>%*.q`*.<br>L\$u< |                        |                 |
|                                                                            | :e 1e 90 64 4<br>)5 hA d5 h9 7                  | 3 410 (16 U6 )1<br>h 34 hd 77 74                   | f2 hd 1h                               | FE (4. wt                  | -                      |                 |
| Bus Address<br>AM DD<br>Start 00000000 00000<br>Length 8 MB                | Bus<br>Size<br>0000 Wait<br>Resp                | Data<br>32 bi<br>States O<br>Donse Norm            | it 💌<br>Imal Ima                       | Bus Control                | Enab<br>targe<br>on bu | ole<br>et<br>us |
| Target Address                                                             | Targ                                            | et Data                                            |                                        | Command                    |                        |                 |
| Start 00000000 00000<br>End 0000000 00000                                  | 0000 Type<br>0000 Value                         | e Value<br>e 0000000                               | ▼<br>00000000                          | Read                       |                        |                 |
| Load Save                                                                  |                                                 | <u>F</u> ile <u>O</u> p                            | tions <u>H</u> e                       | elp <u>C</u> lose          |                        |                 |
| Analyzer Target Addres                                                     | ss Ana                                          | alyzer Target Da                                   | ita Ana                                | lyzer Target Con           | mand                   |                 |

#### 8.1 Data Display Section

The data displayed in this section is the result of performing a read of target memory in the target section. The data display is divided into 3 sections:

 00000000
 00 8f 31 ce 95 7a 59 e4 d1 be 2c db b5 82 4d 03
 ..1..zY.....M.

 00000010
 17 5c 25 2a fc 71 1e 01 02 60 87 91 99 9a 2a a9
 ....\*.

 00000020
 72 59 0e 9a c7 cc 84 4c df b9 f3 ec 89 24 75 3c
 rY....L....\$u

 00000030
 db 35 c6 d7 fe fe 9b 64 43 4b d6 06 5f 17 ac 0e
 .5....dCK.....

 00000040
 02 ea 46 45 95 b0 d5 b9 7b 34 bd 77 74 f2 bd 1b
 ..FE....{4.wt...

Address – the starting address of the data line in hexadecimal.

**Hex Data** – the data read from target memory in hexadecimal, 16 bytes per line. **ASCII Data** – the ASCII equivalent of the hex data, a period is a non-ASCII character.

#### 8.2 Bus Section

The bus section controls the bus address, data and responses of the target memory to an initiator.

| Bus Address             | Bus Data          | Bus Control     |
|-------------------------|-------------------|-----------------|
| AM OD                   | Size 32 bit 💌     |                 |
| Start 00000000 00000000 | Wait States 0 💌   | Enable Target 🛛 |
| Length 8 MB 🔽           | Response Normal 💌 |                 |

#### **Bus Address Setup**

The address setup section specifies the bus address window. The fields are as follows:

AM - Address Modifier

**Start** – Starting address

Length – Address Length (minimum 1 byte to maximum 8MB)

#### Data Setup

The data setup section specifies the data used for writes to target memory. The fields are as follows: **Size** – 8, 16, 32, 64 bit

Wait States - number of wait states between data phases

Response – Normal, Retry or Disconnect

#### **Bus Control**

A checkbox enables bus access to the target memory. The target memory is not accessible on the bus until the Enable Target checkbox is checked. Always disable this checkbox when changing bus setup parameters and re-enable when finished.

#### 8.3 Target Section

The target section controls the data that is read and written to the target memory directly by the analyzer. Click GO after setting these parameters to initiate the transfer.

| Target Address |                  | Target Data |                  | Command |
|----------------|------------------|-------------|------------------|---------|
| Start          | 0000000 00000000 | Туре        | Value 💌          | Read    |
| End            | 0000000 00000000 | Value       | 0000000 00000000 |         |

### **Target Address**

Start and End Address – The start and end address of the target memory.

### **Target Data**

Type – value, file

During a bus write command the data used is specified in the Type field.

Value - uses the data in the Value field.

*File* - uses data stored in a data file that may have been previously saved with the Save button in the Target window

Value – data value in hexadecimal

#### Command

Read or Write command.

#### 8.4 Saving and Loading Data

Read data and setup information can be saved to a file by clicking the Save button. To look at previously saved data click the Load button. Saved target files have a .tgt extension.

# 8.5 Options

No options are available.

#### CHAPTER 9 PROTOCOL CHECKING

The analyzer continuously monitors and detects over 65 protocol and timing violations. Dedicated hardware checks setup and hold times, unstable signals and glitches on lines. Protocol checking screens for illegal signal assertions referenced to the VME specification.

| Anomaly Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 📴 👳 🛛 IDLE                     |
| Anomaly Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test Results                   |
| ✓ Timing Violations         ✓ Master         ✓ 1 - Illegal Combination of DS[1:0]*, A1 and LWORD* (2.1         ✓ 2 - Use of reserved Address Modifiers (2.30)         ✓ 3 - BLT cycle crossing 256 byte boundary (2.12a)         ✓ 4 - MBLT cycle crossing 2048 byte boundary (2.78)         ✓ 5 - BLT cycle mixing data widths (2.79)         ✓ 6 - BLT cycle using unaligned transfers (2.80)         ✓ 7 - LOCK* stays asserted after master released (2.82)         ✓ 8 - BBSY* stays asserted after last locked transfer (2.83)         ✓ 9 - Lock Command not terminated (2.84)         ✓ 10 - D. Lock Lock Lock Contract (2.84) | Options       Help       Close |

#### 9.1 Anomaly Checklist

The anomaly checklist allows the selection of specific tests. A checklist tree structure groups anomalies into categories. Clicking the "+" sign next to a category expands the checklist into individual anomalies. Individual anomalies can be checked. Clicking the "-" sign next to a category compresses the checklist back into a single category. Checking a category selects all the anomalies under that selection. The Clear All button removes all the checkmarks while the Set All button marks every anomaly.

The anomaly checklist is divided into these categories:

- 1. Master Timing Violations
- 2. Slave Timing Violations
- 3. Arbitration Timing Violations
- 4. Interrupt Timing Violations
- 5. Other Timing Violations

The following is a complete list of all the anomalies that the analyzer checks. For details on each anomaly reference the Spec rule in the VME specification.

| Anomaly | Spec  | Description                                                   |
|---------|-------|---------------------------------------------------------------|
| Number  | Rule  |                                                               |
| 1.      | 2.10a | Illegal Combination of DS[1:0]*, A1 and LWORD*                |
| 2.      | 2.30  | Use of reserved Address Modifiers                             |
| 3.      | 2.12a | BLT cycle crossing 256 byte boundary                          |
| 4.      | 2.78  | MBLT cycle crossing 2048 byte boundary                        |
| 5.      | 2.79  | BLT cycle mixing data widths                                  |
| б.      | 2.80  | BLT cycle using unaligned transfers                           |
| 7.      | 2.82  | LOCK* stays asserted after master released                    |
| 8.      | 2.83  | BBSY* stays asserted after last locked transfer               |
| 9.      | 2.84  | Lock Command not terminated                                   |
| 10.     | 2.91  | Retry during data phase                                       |
| 11.     | 2.13a | Both DTACK* and BERR* active                                  |
| 12.     | 2.14a | Data bus driven before end of previous cycle                  |
| 13.     | 2.16  | Data not maintained until DS* goes high                       |
| 14.     | 2.17a | DS* driven high before acknowledge                            |
| 15.     | 2.27  | Bus driven before AS* inactive                                |
| 16.     | 2.29  | AS* driven low before AS* is inactive for 60ns                |
| 17.     | 2.30  | AS* driven low before IACK* is inactive for 35ns              |
| 18.     | 2.35  | DSA* low before DTACK* and BERR* are high                     |
| 19.     | 2.36  | DSA* low before AS* is low                                    |
| 20.     | 2.37  | DSA* low before both DS0* and DS1* are high for 40 ns         |
| 21.     | 2.38  | DSA* low before WRITE* is valid for 35 ns                     |
| 22.     | 2.40  | Address invalid before DTACK* or BERR*                        |
| 23.     | 2.41  | Address invalid for RMW cycle before second DTACK* or BERR*   |
| 24.     | 2.42  | Address Modifier invalid before last DTACK* or BERR*          |
| 25.     | 2.43  | Address changed before 40ns after AS* low                     |
| 26.     | 2.45  | AS* held low less then 40ns                                   |
| 27.     | 2.46a | DSA* not held low until falling edge of DTACK*, RETRY*, BERR* |
| 28.     | 2.48  | Data changed before DTACK*, RETRY* or BERR*                   |
| 29.     | 2.49  | WRITE* level changed before DSB* is high for 10ns             |
| 30.     | 2.95  | DS[1:0] not high within 200ns of RETRY*                       |

Master Timing Violations

#### **Slave Timing Violations**

| Anomaly | Spec  | Description                                                  |
|---------|-------|--------------------------------------------------------------|
| Number  | Rule  |                                                              |
| 31.     | 2.55  | DTACK* or BERR* driven low before 30ns after DSA* goes low   |
| 32.     | 2.97  | DTACK* driven before 30ns after first falling edge of DSA*   |
| 33.     | 2.56a | Data changed before DSA* goes high                           |
| 34.     | 2.57  | DTACK* or BERR* goes high before both DS0* and DS1* are high |
| 35.     | 2.99  | RETRY* goes low before 30ns after DSA* goes low              |
| 36.     | 2.100 | RETRY* goes low before 30ns after falling edge of DSA*       |
| 37.     | 2.101 | DTACK* or BERR* driven low before 225ns after RETRY* is low  |
| 38.     | 2.103 | RETRY* goes high before both DS1* and DS0* are high          |
| 39.     | 2.104 | RETRY* not high after both DS1* and DS0* are high for 30ns   |

| 0    |                                                                                                    |
|------|----------------------------------------------------------------------------------------------------|
| Spec | Description                                                                                        |
| Rule |                                                                                                    |
| 3.6  | New Bus Grant before rising edge of BBSY*                                                          |
| 3.15 | BGIN*[3:0] driven low before BBSY* is high for 40ns                                                |
| 3.7  | BBSY* low for less then 90ns                                                                       |
| 3.9  | BBSY* low less then 30ns after release of bus request                                              |
| 3.10 | BBSY* goes high before bus grant goes high                                                         |
| 3.11 | Bus request withdrawn less then 50ns after BBSY* goes low                                          |
|      | Spec         Rule           3.6         3.15           3.7         3.9           3.10         3.11 |

#### Arbitration Timing Violations

#### Interrupt Timing Violations

| Anomaly | Spec | Description                                                   |
|---------|------|---------------------------------------------------------------|
| Number  | Rule |                                                               |
| 46.     | 4.15 | IACK* driven before AS* goes high                             |
| 47.     | 4.17 | AS* driven low before AS* is inactive for 60ns                |
| 48.     | 4.18 | AS* driven low before IACK* is active for 35ns                |
| 49.     | 4.19 | AS* high for less then 40ns between consecutive INTA cycles   |
| 50.     | 4.20 | DSA* low before DTACK* and BERR* are high                     |
| 51.     | 4.21 | DSA* low before AS* is low                                    |
| 52.     | 4.22 | DSA* low before both DS0* and DS1* are high for 40 ns         |
| 53.     | 4.23 | DSA* low before WRITE* is valid for 35 ns                     |
| 54.     | 4.24 | DSB* low more then 10ns after DSA* is low                     |
| 55.     | 4.25 | Interrupt Acknowledge code valid until falling edge of DTACK* |
| 56.     | 4.26 | IACK* goes high before falling edge of DTACK* or BERR*        |
| 57.     | 4.27 | AS* goes high before DTACK* or BERR* goes low                 |
| 58.     | 4.28 | AS* held low less then 40ns                                   |
| 59.     | 4.29 | DSA* driven high before DTACK* or BERR* go low                |
| 60.     | 4.30 | DSB* driven high before DTACK* or BERR* go low                |
| 61.     | 4.31 | WRITE* high for less then 10ns after data strobes are high    |
| 62.     | 4.37 | DTACK* or BERR* driven low before 30ns after DSA* goes low    |
| 63.     | 4.38 | Data changed before DSA* goes high                            |
| 64.     | 4.39 | DTACK* or BERR* goes high before both DS0* and DS1* are high  |

#### Other Timing Violations

| Anomaly | Spec | Description                                            |
|---------|------|--------------------------------------------------------|
| Number  | Rule |                                                        |
| 65.     | 5.2  | SYSRESET* not held for 200ms                           |
| 66.     | 5.3  | No SYSCLK when SYSRESET* is low                        |
| 67.     | -    | No Data Acknowledge. A slave device is not responding. |

#### 9.2 Test Results

Results of the anomaly checking are displayed in the test results window as the tests are being performed. A scroll bar allows the viewing of previous test results.

#### 9.3 Saving Results

Anomaly test information can be saved to a file by clicking the Save button. To look at previously saved anomaly data click the Load button. Saved anomaly test files have an .adt extension.

# 9.4 Trace Controls

The trace controls of the state and waveform display incorporate the anomaly checklist. Anomalies can be used as in the trigger and trace qualification when capturing trace activity. An anomaly event field specifies the use of the anomalies selected in the checklist.

# 9.5 Options

No options are available.

#### CHAPTER 10 BACKPLANE TEST

The backplane test checks for shorts and the ability to drive signals high and low in an open backplane. This test will not run correctly if other boards are plugged into the backplane. The name of the signal is displayed as it is being tested. If a short or drive problem is encountered it is listed in a test results window.

#### 10.1 Short Test

The short test checks for shorts between signals by pulsing each bus signal and monitoring every other signal for that pulse. If a pulse is detected on a signal not being driven it is considered a short and displayed in the test results window.

#### 10.2 Drive Test

The drive test checks for a signals ability to be driven low and high. A low to high pulse and high to low pulse is driven onto each bus signal while it is monitored. If the monitored pulse does not match the pulse driving the signal a drive test error is flagged and displayed in the test results window.

| 🚍 Backplane Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 💷 🥯 IDLE           |
| Backplane Test Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Results       |
| AM[5]<br>Control<br>WRITE<br>BBSY<br>BCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>SCLR<br>S |                    |
| Load Save <u>C</u> lear All <u>S</u> et All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Options Help Close |

#### CHAPTER 11 UTILITIES

The Utilities menu provides for general maintenance, setup and information functions.

#### 11.1 Setup

To configure the RS232 or USB port, click on Utilities in the Main Menu and select Setup.

|                |   | ×      |
|----------------|---|--------|
| al Port        |   | OK     |
| ort COM1       |   | Cancel |
| aud Rate 57600 | • |        |
| aud Rate 57600 | • |        |

For the RS232 interface, enter the COM port number and the baud rate you are using. The board rate of the analyzer will be automatically adjusted to match the software setting. Select USB if using the USB port.

Note: If you are having communication problems using the RS232 interface try lowering the baud rate. The speed of this interface may be influenced by the PC speed and cable type and length.

#### 11.2 Download Firmware

The analyzer firmware resides in a Flash memory that can be reprogrammed. Updates are available on Silicon Control's web site at <u>www.silicon-control.com</u>. Downloading firmware into the analyzer can take up to 20 minutes.

| Downloa | nd Firmware                            | ×              |
|---------|----------------------------------------|----------------|
| File    | C:\Silicon Control\Firmware850\pci850. | <u>B</u> rowse |
| %       |                                        | Download       |
|         |                                        | Close          |

#### 11.2.1 Download Firmware Instructions

Carefully follow these instructions to download new firmware into the analyzer. All the files necessary to perform this function reside in the Download Firmware folder on the CD that was included with the analyzer. Downloading firmware requires the use of the USB port.

1. Save all download files on your PC in one folder.

2. Install jumper 4 on board.

3. Connect USB cable.

4. Apply power to analyzer.

\*5. The PC should find the New Device. When asked for the driver, browse to the CD.

\*6. If the device is not found go to the Control Panel and click on Add New Hardware. When asked for the driver, browse the CD.

7. Start the program EzMr. Click the Download button and select the file "Download Code.hex".

8. The Green and Red LED should illuminate. Wait for the Red LED to go off.

9. Start the AnalyzeIt software. Click utilities, then Setup and select USB. Exit and restart the AnalyzeIt software.

10. Click Utilities, then Download Firmware and browse for the file "Code.hex". Click Download. Click OK when download is done.

11. Start the program EzMr. Click the Download button and select the file "Download Data.hex".

12. The Green and Red LED should illuminate. Wait for the Red LED to go off.

13. Click Utilities, then Download Firmware and browse for the file "Data.hex". Click Download. Click OK when download is done.

14. Remove power, the USB cable and jumper 4 from the board.

15. Your new firmware is installed.

\* Steps 5 and 6 are performed when you use the USB interface for the first time.

#### 11.3 Board Information

This function reads basic information from the analyzer. The model number, serial number, trace memory size, hardware version and firmware version is displayed.

| Board Info       |           | 3 |
|------------------|-----------|---|
| Model            | VME850-3  |   |
| Serial Number    | 6318      |   |
| Buffer Size      | 512K      |   |
| Firmware Version | 4.7       |   |
| Hardware Version | 1.2 Close |   |

### 11.4 Bus Configuration

This function sets and displays bus configuration information including the type of bus and protocol used, bus width, bus signaling voltage and bus frequency.

The Mode field can be set to VME, 2eVME or 2eSST protocols.

The Width field can be set to 32 or 64 bit.

The Voltage field can be set to 5.0V or 3.3V.

The Frequency field displays the frequency of the on board clock.

| Bus Configurat                               | tion                           | ×            |
|----------------------------------------------|--------------------------------|--------------|
| Bus<br>Mode<br>Width<br>Voltage<br>Frequency | 2eVME<br>32 bit<br>5.0V<br>MHz | OK<br>Cancel |
|                                              |                                |              |

# CHAPTER 12 MISCELLANEOUS

# 12.1 Online Help

Help on the operation of the analyzer and software is available in the help menu. A contents page presents help in a book form or use index to find information from keywords.

| Help Topics: Analyzelt! Help ? >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents Index Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Click a book, and then click Open. Or click another tab, such as Index.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quick Start Guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| No. Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Second Se |
| Performance Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Master                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Configuration Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Target Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Compliance Lesting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Doop Rint Coursel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### APPENDIX A ANALYZER SPECIFICATIONS Statistics State/Waveform/Performance Analysis 0 Performance Event Counters Trace Buffer Sizes 8 - 20 bit hardware counters 128K, 256K, 512K and 1M samples $\circ$ 0 0 144 bits wide **Exerciser** Specifications **Trace Sampling Speeds** Master 100 Mhz max synchronous 0 Protocols Supported 400 Mhz max asynchronous 0 0 SCT, BLT, MBLT, 2eVME, 2eSST Protocols Sampled SCT, BLT, MBLT, 2eVME, 2eSST Addressing Modes 0 A16, A24, A32, A40, A64 Signals Sampled Data Widths o P1/P2 (112 signals) 0 8. 16. 32. 64 bit data A[31:0], D[31:0], DS[1:0]\*, Master Commands AM[5:0], AS\*, WRITE\*, 0 Read – reads data from slave LWORD\* Write - writes data to slave IRQ[7:1]\*, IACK\*, IACKI/O\*, Test - verifies memory with test BR[3:0]\*, BG[3:0]\* patterns BBSY\*, BCLR\*, BERR\*, Compare - reads data and DTACK\*, RETRY\*, RESP\* compares with stored data SYSRESET\*, SYSFAIL\*, User Parameters ACFAIL\*, SYSCLK 0 Address Modifiers GA[4:0]\*, GAP\*, MPR, MCLK, **Bus Request Level** MSD, MMD, MCTL Protocol P2 user defined (110 signals) 0 Rows A, C, D and Z Stimulus P0 user defined (95 signals) Pattern Generation on P1/P2 and P0 0 Ο Rows A, B, C, D, E 15 Stimulus Conditions • 0 Specify active, inactive or not Other Information Sampled Time Tag (range 2.5 ns to 60 sec) driven on any signal 0 Drive all VME signals Trigger Level 0 Drive all P2 user defined signals External Front Panel Inputs (x8) 0 Drive all P0 user defined signals **Trigger Conditions** 15 Level Stimulus Sequencer 0 0 8 bus events Control of stimulus conditions Address and Data Ranges 0 Based on bus events 8 External Front Panel Inputs 0 Specify duration and next condition Trigger Types CR/CSR Scan and Decode Single Event 0 Scans CR/CSR space for devices 0 Logical Event Combination (AND, OR, 0 Identifies and decodes data 0 XOR, NOT) Backplane Short Test 8 Level Sequencer 0 Checks for ability to drive signals 0 Trigger Occurrence Counting Checks for shorts between signals 0 $\circ$ 8 – 16 bit hardware counters **Trigger Positions** Slave Memory 0%, 25%, 50%, 75%, 100% 0 Memory Sizes • Filter Conditions o 8MB, 16MB, 32MB, 64MB 8 bus events 0 Protocols Supported Address and Data Ranges 0 SCT, BLT, MBLT, 2eVME, 2eSST 0 8 External Front Panel Inputs 0 Addressing Modes Performance Analysis Measurements A16, A24, A32, A40, A64

- **Bus** Utilization 0
- **Transfer Rates** 0

- 0
- Data Widths
  - 8, 16, 32, 64 bit data 0

| • Window                     | wed 64K Address Space               | Power Requirement    | S                                                   |  |
|------------------------------|-------------------------------------|----------------------|-----------------------------------------------------|--|
| Contro                       | lled Response                       | • Operating—5V       | • Operating—5V at 3 Amps max                        |  |
| 0                            | Retry                               | • Standby—5V at      | • Standby—5V at 1 Amp max                           |  |
| 0                            | Suspend                             |                      | -                                                   |  |
| 0                            | Error                               | Dimensions           |                                                     |  |
|                              |                                     | • VME 6U Euroc       | ard                                                 |  |
| Anomaly Det                  | ection                              |                      |                                                     |  |
| • Detects                    | Unstable Signals                    |                      |                                                     |  |
| <ul> <li>Checks</li> </ul>   | Out of Sequence Signals             | Ordering Information | n                                                   |  |
| <ul> <li>Saved i</li> </ul>  | in Trace Buffer                     | VME Analyzers        |                                                     |  |
| • Specifi                    | ed in Event Triggers                | VME850-1             | VME Bus Analyzer/Exerciser*<br>128K Trace Buffer    |  |
| Front Panel                  | Interfaces                          |                      | 8MB Slave Memory                                    |  |
| • RS232                      | Port                                | VME850-2             | VME Bus Analyzer/Exerciser*                         |  |
| 0                            | DB9 connector                       |                      | 256K Trace Buffer                                   |  |
| 0                            | 110 to 115K Baud                    |                      | 16MB Slave Memory                                   |  |
| 0                            | Cable included                      | VME850-3             | VME Bus Analyzer/Exerciser*                         |  |
| • USB P                      | ort                                 |                      | 512K Trace Buffer                                   |  |
| 0                            | Series B connector                  |                      | 32MB Slave Memory                                   |  |
| 0                            | 12 MB/s                             | VME850-4             | VME Bus Analyzer/Exerciser*                         |  |
| 0                            | Cable included                      |                      | IM Iface Buffer                                     |  |
| <ul> <li>Indicate</li> </ul> | ors                                 |                      | 04MB Slave Memory                                   |  |
| 0                            | GOLED                               | VME850P0-1           | P0 Analyzer/Exerciser Module                        |  |
| 0                            | User LED                            | V 11120501 0-1       | 128K Trace Memory                                   |  |
| <ul> <li>Pushbu</li> </ul>   | tton                                | VME850P0-2           | P0 Analyzer/Exerciser Module                        |  |
| 0                            | Reset Analyzer                      |                      | 256K Trace Memory                                   |  |
| 0                            | Reset System                        | VME850P0-3           | P0 Analyzer/Exerciser Module                        |  |
| • Externa                    | al Power                            |                      | 512K Trace Memory                                   |  |
| 0                            | 2 Conductor front panel             | VME850P0-4           | P0 Analyzer/Exerciser Module                        |  |
| 0                            | Cable included                      |                      | 1M Trace Memory                                     |  |
| • Trigger                    |                                     |                      |                                                     |  |
| 0                            | 10 pin socket                       | VME850P2-1           | P2 Analyzer/Exerciser Module                        |  |
| 0                            | 8 in, 1 out, 1 ground               | VA (E950D2 2         | 128K Trace Memory                                   |  |
| 0                            | Cable included                      | VME850P2-2           | P2 Analyzer/Exerciser Module                        |  |
| • Fuses                      |                                     | VME850D2 3           | 230K Hace Melliory<br>D2 A polyzor/Exorcisor Modulo |  |
| 0                            | Main power                          | V 1VIE050F 2-5       | 512K Trace Memory                                   |  |
| 0                            | External power                      | VMF850P2.4           | P2 Analyzer/Exerciser Module                        |  |
| -                            | L L                                 | V 111203/1 2-7       | 1M Trace Memory                                     |  |
| <b>Optional Mo</b>           | dules                               |                      |                                                     |  |
| • P0 Use                     | r Defined Signal Analyzer/Exerciser |                      |                                                     |  |

# Self Test

•

- Coverage 95%
- Bus Transceiver Test

#### Environmental

• Operating Temperature 0 to 55 deg C

P2 User Defined Signal Analyzer/Exerciser

- Storage Temperature –40 to 85 deg C
- Humidity Up to 95% Non-Condensing

#### Included with every VME850

VME850 Analyzer, AnalyzeIt PC software, API software, USB driver software, terminal interface, USB cable, RS232 cable, trigger cable, documentation, quick start guide and carrying case.

\* Suffix "A" designates 96 pin P1/P2 (i.e. VME850A-1) No suffix designates 160 pin P1/P2 (i.e. VME850-1)

# VME Bus Analyzer Application Programming Interface

Version 1.3

#### Scope

This document describes the communications interface to the Silicon Controls VME8XX and VME6XX bus analyzers. The interface is intended for use by custom applications that wish to programatically control the operation of the analyzer. Communications functions are provided to configure the communications port, send commands and return responses. It is the responsibility of the custom application to format commands and parse data that is returned.

# Environment

The API is provided as a library to be linked with a custom C or C++ application. The library has been compiled with the Microsoft Developer Studio compiler, version 6. The library may be used on Windows 9X, NT and 2000 systems. Note that not all Windows operating systems support the USB analyzer interface.

The API uses the Microsoft multi-threaded run-time library. Applications that use the API should specify code generation with the multi-threaded or multi-threaded DLL library.

### **Directories**

The API is delivered with the following directory structure:

| Docs    | The API interface document.                                    |
|---------|----------------------------------------------------------------|
| PciApi  | The API library code, with debug and release builds.           |
| Sample  | Sample console application which reads setup memory.           |
| Sample2 | Sample console application which starts and stops a trace, and |
|         | reads trace samples.                                           |
| Sample3 | Sample console application which writes and reads setup memory |
| Sample4 | Simple application which writes a single byte to setup memory. |
| TestApp | Test application which provides a GUI interface to exercise    |
|         | the API.                                                       |

#### References

"VME650 Interface Document"

#### Overview

The API starts with a set of functions to manage the communications port. *VMEInitPort* is used to specify the port to use, which may be a serial port or USB interface. If a serial port is requested, the baud rate is also specified. The *VMEClosePort* function is called when the communications port is no longer needed.

The custom application is the master of the communications channel. All commands are initiated by the application, and any data from the analyzer is sent as a response to a command.

Two levels of communications are provided by the API. A low-level interface is available through the *VMEWriteRawData* and *ReadRawData* interfaces. Data is sent without modification by the *VMEWriteRawData* function. Data from the analyzer is then read by calling *VMEReadRawData* repeatedly until all expected data has been received.

A higher-level interface is also available which implements a series of commands, and interprets the responses. An example of such a command would be reading a portion of the analyzer Setup memory and placing the data in a user supplied buffer. This operation would require a series of commands to set the setup memory address, length, and initiate the read operation. The returned responses would also need to be parsed to test for valid acknowledgements and to extract the returned data. This sequence of commands and responses is handled automatically by this higher-level interface.

Functions in the higher-level interface start with *VMEAllocCommand*, which is used to create a command request. The application receives a pointer to the request, and is required to fill in certain parameters in the request. *VMESendCommand* is then called to initiate the request. The application can then call *VMEWaitForCompletion* if it wishes to wait for the command to be completed. Or a callback function may be specified when the request is allocated, which will be called when the command is complete, or if an error occurs.

# **Function Reference**

### VMEInitPort

Prototype:

t\_VMEComError VMEInitPort(char \*portName, int baud);

#### Parameters:

portName - A string that specifies the communications port to use to communicate with the analyzer. Valid strings are of the form "COM#" (# = 1, 2, 3, ...) or "USB". baud - If the portName is "COM#", this parameter specifies the baud rate. Valid values are

9600, 19200, 28800, 38400, and 57600.

#### Returns:

VMECOM\_SUCCESS, or error code as specified in VMEComError.h.

#### Description:

This function initializes a communications channel to the analyzer. A serial port (specified by "COM#"), or a USB interface may be specified. For a serial port, the specified baud rate is used to configure the port. This baud rate is also used to configure the analyzer serial port.

This function also starts a thread to receive data from the specified port.

#### VMEClosePort

Prototype:

void VMEClosePort();

Parameters:

None

Returns:

None

Description:

This function terminates the communications channel to the analyzer.

#### VMEWriteRawData

Prototype:

t\_VMEComError VMEWriteRawData(unsigned char \*data, int len);

#### Parameters:

data - One or more bytes of data to send to the analyzer. len - Number of bytes to be sent.

#### Returns:

VMECOM\_SUCCESS, or error code as specified in VMEComError.h.

#### Description:

This function writes the specified data bytes to the analyzer. The function does not return until all bytes have been sent.

#### VMEReadRawData

Prototype:

t\_VMEComError VMEReadRawData(unsigned char \*data, int bufferSize, int \*retLen);

#### Parameters:

data - Pointer to a buffer to receive the data from the analyzer. bufferSize - Size of data buffer.

#### Returns:

retLen - Number of bytes copied to the data buffer. VMECOM\_SUCCESS, or error code as specified in VMEComError.h.

#### Description:

This function checks if any data has been received from the analyzer. The data is copied, up to a maximum of bufferSize bytes, to the buffer specified by the data parameter. The retLen parameter is set to the number of bytes copied by this function.

This function will not wait for data to be received. It will return immediately, and retLen will be set to zero if no received data is available.

#### VMEAllocCommand

#### Prototype:

t\_VMECommand \*ciAllocCommand(t\_VMECommandType commandType, void (\*callback)(t\_VMECommand \*cmd), long gpValue);

#### Parameters:

commandType - Indicates the type of command to perform with the analyzer. callback - Specifies a function to be called when the command completes, or when an error occurs. This parameter may be NULL if no callback is required. gpValue - General purpose 32-bit value which will be passed to callback function. The application may use the value for any purpose. Note that the callback function is also passed a pointer to the command structure.

#### Returns:

t\_VMECommand - A pointer to the command structure is returned if the function is successful. Otherwise, NULL is returned.

#### Description:

This function allocates a command structure to perform an analyzer operation. The type of command is specified by the commandType parameter, according to the following table. The caller is responsible for setting the other parameters in the command structure according to the table.

The t\_VMECommand structure is defined as follows. Normally, the caller only fills in the m\_param values, as required for the specified command.

#### typedef struct

{

| t_VMECommandT   | ype m_comma | ind;                             |
|-----------------|-------------|----------------------------------|
| t_CommandError  | m_error;    | // Indicates result of operation |
| long            | m_gpVal;    |                                  |
| void            | (*m_callbac | k)(t_VMECommand *cmd);           |
| long            | m_param[M   | IAX_VME_PARAMS];                 |
| } t VMECommand; |             |                                  |

This function does not initiate the command. The SendCommand function must be called to start sending the command.

| t_VMECommandType           | m_param[0] | m_param[1] | m_param[2] | Description      |
|----------------------------|------------|------------|------------|------------------|
| c readSetup                | address    | length     | pointer    | Reads length     |
| _ 1                        |            | Ũ          | to buffer  | bytes from       |
|                            |            |            |            | setup memory     |
|                            |            |            |            | into buffer.     |
| c_writeSetup               | address    | length     | Pointer    | Writes length    |
|                            |            | C C        | to buffer  | bytes from       |
|                            |            |            |            | buffer to setup  |
|                            |            |            |            | memory.          |
| c_readTraceBeforeTrigger   | Sample     | number     | pointer    | Reads trace data |
|                            | index      | of samples | to buffer  | samples before   |
|                            |            | to read    |            | the trigger and  |
|                            |            |            |            | places them in   |
|                            |            |            |            | the buffer.      |
| c_readTraceAfterTrigger    | Sample     | number of  | Pointer    | Reads trace data |
|                            | index      | samples to | to buffer  | samples after    |
|                            |            | read       |            | the trigger and  |
|                            |            |            |            | places them in   |
|                            |            |            |            | the buffer.      |
| c_readHSTraceBeforeTrigger | sample     | number of  | pointer    | Reads high       |
|                            | index      | samples to | to buffer  | speed trace data |
|                            |            | read       |            | samples before   |
|                            |            |            |            | the trigger and  |
|                            |            |            |            | places them in   |
|                            |            |            |            | the buffer.      |
| c_readHSTraceAfterTrigger  | sample     | number of  | pointer    | Reads high       |
|                            | index      | samples to | to buffer  | speed trace data |
|                            |            | read       |            | samples after    |
|                            |            |            |            | the trigger and  |
|                            |            |            |            | places them in   |
|                            |            |            |            | the buffer.      |
| c_traceGo                  | n/a        | n/a        | n/a        | Starts trace     |
|                            |            |            |            | capture.         |
| c_traceStop                | n/a        | n/a        | n/a        | Stops trace      |
|                            |            |            |            | capture.         |
| c_startSearch              | n/a        | n/a        | n/a        | Starts trace     |
|                            |            |            |            | search.          |
| c_stopSearch               | n/a        | n/a        | n/a        | Stops trace      |
|                            |            |            |            | search.          |
| c_perfGo                   | n/a        | n/a        | n/a        | Starts           |
|                            |            |            |            | performance      |
|                            |            |            |            | measurements.    |
| c_perfStop                 | n/a        | n/a        | n/a        | Stops            |
|                            |            |            |            | performance      |
|                            |            |            |            | measurements.    |
| c_anomalyGo                | n/a        | n/a        | n/a        | Starts anomaly   |
|                            | ,          | ,          | ,          | detection.       |
| c_anomalyStop              | n/a        | n/a        | n/a        | Stops anomaly    |
|                            |            |            |            | detection.       |
| c_complianceTestGo         | n/a        | n/a        | n/a        | Starts           |
|                            |            |            |            | compliance test. |
| c_complianceTestStop       | n/a        | n/a        | n/a        | Stops            |
|                            |            |            |            | compliance test. |
| c_startConfigScan          | n/a        | n/a        | n/a        | Starts           |
|                            |            |            |            | configuration    |
|                            |            |            |            | scan.            |

#### VME650 Users Manual

| c_stopConfigScan    | n/a     | n/a    | n/a               | Stops                  |
|---------------------|---------|--------|-------------------|------------------------|
|                     |         |        |                   | configuration          |
|                     |         |        |                   | scan.                  |
| c_exerciserGo       | n/a     | n/a    | n/a               | Starts exerciser.      |
| c_exerciserStop     | n/a     | n/a    | n/a               | Stops exerciser.       |
| c_stimulusGo        | n/a     | n/a    | n/a               | Starts stimulus.       |
| c_stimulusStop      | n/a     | n/a    | n/a               | Stops stimulus.        |
| c_writeFlash        | address | length | Pointer           | Writes length          |
|                     |         |        | to buffer         | bytes from             |
|                     |         |        |                   | buffer to flash        |
|                     |         |        |                   | memory at the          |
|                     |         |        |                   | specified              |
|                     |         |        |                   | address.               |
| c_readTarget        | address |        | pointer to buffer | Reads length bytes     |
|                     |         |        |                   | from target memory     |
|                     |         |        |                   | into buffer.           |
| c_writeTarget       | address | length | pointer to buffer | Writes length bytes    |
|                     |         |        |                   | from buffer to target  |
|                     |         |        |                   | memory.                |
| c_selfTestGo        | n/a     | n/a    | n/a               | Starts self test.      |
| c_selfTestStop      | n/a     | n/a    | n/a               | Stops self test.       |
| c_backplaneTestGo   | n/a     | n/a    | n/a               | Starts backplane test. |
| c_backplaneTestStop | n/a     | n/a    | n/a               | Stops backplane test.  |

#### VMESendCommand

Prototype:

t\_VMEComError VMESendCommand(t\_VMECommand \*cmd);

#### Parameters:

cmd - Command to perform. This is a pointer returned by the AllocCommand function.

#### Returns:

VMECOM\_SUCCESS, or error code as specified in VMEComError.h.

#### Description:

This function initiates the command specified by the cmd structure. If another command is already in progress, this command is added to a queue. This function returns without waiting for the comand to complete.

If specified when VMEAllocCommand was called, the callback function will be called when the command completes, or when an error is encountered processing the command. The VMEWaitForCompletion function may also be called to wait for any pending commands to be completed.

#### VMEWaitForCompletion

Prototype:

t\_VMEComError VMEWaitForCompletion();

Parameters: None

Returns:

VMECOM\_SUCCESS, or error code as specified in VMEComError.h.

#### Description:

This function waits for any current or pending commands to complete before returning. A timeout error may be returned by this function if command processing does not complete within a maximum time period.

#### VMEGetErrorString

#### Prototype:

char \*VMEGetErrorString(t\_VMEComError errCode);

Parameters:

None

#### Returns:

Pointer to string which describes the error code.

#### Description:

This function translates an error code to a descriptive string. A pointer to the string is returned.

# **Setup Memory Space Definitions**

The setup memory contains all the parameters to implement a specific analyzer command and command status. This section starts with a summary of all the setup memory locations and is followed by details of each parameter. The text in RED describes how the Analyze PC software implements the analyzer functions and can be used for reference purposes.

| Address (decimal) | Fields                   |
|-------------------|--------------------------|
| 0 - 7             | Board Name               |
| 8                 | Model Number             |
| 9 -10             | Trace Buffer Size        |
| 11                | Firmware Version Code    |
| 12                | Hardware Version Code    |
| 13                | Reserved                 |
| 14                | USB Control              |
| 15                | RS232 Control            |
| 16                | Serial Number Low        |
| 17                | Serial Number High       |
| 18                | Bus Info                 |
| 19                | Bus Speed                |
| 20 - 49           | Trace Condition E1       |
| 50 - 79           | Trace Condition E2       |
| 80 - 109          | Trace Condition E3       |
| 110 - 139         | Trace Condition E4       |
| 140 - 169         | Trace Condition E5       |
| 170 - 199         | Trace Condition E6       |
| 200 - 229         | Trace Condition E7       |
| 230 - 259         | Trace Condition E8       |
| 260 - 279         | Trace Control L1         |
| 280 - 299         | Trace Control L2         |
| 300 - 319         | Trace Control L3         |
| 320 - 339         | Trace Control L4         |
| 340 - 359         | Trace Control L5         |
| 360 - 379         | Trace Control L6         |
| 380 - 399         | Trace Control L7         |
| 400 - 419         | Trace Control L8         |
| 420               | Sample Clock             |
| 421               | Trigger Position         |
| 422               | Power Zoom Sample Clock  |
| 423               | Reserved                 |
| 424               | GO Control               |
| 425               | GO Status                |
| 426 - 428         | # Samples before trigger |
| 429 - 431         | # Samples after trigger  |
| 432 - 439         | Reserved                 |
| 440               | Search Control           |

# Setup Memory Address Summary

| 441 - 444  | Search Status                |  |
|------------|------------------------------|--|
| 445 - 474  | Search Condition             |  |
| 475 - 479  | Reserved                     |  |
| 480        | Self Test Control            |  |
| 481        | Self Test Status             |  |
| 482        | Self Test Result             |  |
| 483-496    | Reserved                     |  |
| 497        | Performance Analysis Control |  |
| 498        | Performance Analysis Status  |  |
| 499        | Performance Analysis Type    |  |
| 500 - 529  | Performance Item 1 Setup     |  |
| 530 - 559  | Performance Item 2 Setup     |  |
| 560 - 589  | Performance Item 3 Setup     |  |
| 590 - 619  | Performance Item 4 Setup     |  |
| 620 - 649  | Performance Item 5 Setup     |  |
| 650 - 679  | Performance Item 6 Setup     |  |
| 680 - 709  | Performance Item 7 Setup     |  |
| 710 - 739  | Performance Item 8 Setup     |  |
| 740 - 747  | Performance Total Sample #   |  |
| 748 - 751  | Performance Item 1 Results   |  |
| 752 - 755  | Performance Item 2 Results   |  |
| 756 - 759  | Performance Item 3 Results   |  |
| 760 - 763  | Performance Item 4 Results   |  |
| 764 - 767  | Performance Item 5 Results   |  |
| 768 - 771  | Performance Item 6 Results   |  |
| 772 - 775  | Performance Item 7 Results   |  |
| 776 - 799  | Performance Item 8 Results   |  |
| 800        | Master Control               |  |
| 801        | Master Status                |  |
| 802        | Master Address Space         |  |
| 803        | Master Address Size          |  |
| 804 - 811  | Master Start Address         |  |
| 812        | Master Start Address Length  |  |
| 813        | Master Data Size             |  |
| 814        | Master Data Cycle            |  |
| 815        | Master Data Type             |  |
| 816 - 847  | Master Data                  |  |
| 848        | AM code (VME only)           |  |
| 849        | Bus Request Level (VME only) |  |
| 850        | Configuration Scan Control   |  |
| 851        | Configuration Scan Status    |  |
| 852 - 915  | Configuration Data           |  |
| 916 - 923  | Configuration Address        |  |
| 924 - 927  | Reserved                     |  |
| 928        | Stimulus Control             |  |
| 929        | Stimulus Status              |  |
| 930 - 959  | Stimulus Condition S1        |  |
| 960 -989   | Stimulus Condition S2        |  |
| 990 - 1019 | Stimulus Condition S3        |  |

# VME650 Users Manual

| 1020 - 1049 | Stimulus Condition S4         |
|-------------|-------------------------------|
| 1050 - 1079 | Stimulus Condition S5         |
| 1080 - 1109 | Stimulus Condition S6         |
| 1110 - 1139 | Stimulus Condition S7         |
| 1140 - 1169 | Stimulus Condition S8         |
| 1170 - 1199 | Stimulus Condition S9         |
| 1200 - 1229 | Stimulus Condition S10        |
| 1230 - 1259 | Stimulus Condition S11        |
| 1260 - 1289 | Stimulus Condition S12        |
| 1290 - 1319 | Stimulus Condition S13        |
| 1320 - 1349 | Stimulus Condition S14        |
| 1350 - 1379 | Stimulus Condition S15        |
| 1380 - 1409 | Stimulus Condition S16        |
| 1410 - 1414 | Stimulus Control SL1          |
| 1415 - 1419 | Stimulus Control SL2          |
| 1420 - 1424 | Stimulus Control SL2          |
| 1425 - 1429 | Stimulus Control SL3          |
| 1430 - 1434 | Stimulus Control SL 5         |
| 1435 - 1439 | Stimulus Control SL5          |
| 1440 - 1444 | Stimulus Control SL0          |
| 1445 - 1449 | Stimulus Control SL 8         |
| 1450 - 1454 | Stimulus Control SL9          |
| 1455 - 1459 | Stimulus Control SL 10        |
| 1450 - 1457 | Stimulus Control SL10         |
| 1465 - 1469 | Stimulus Control SL12         |
| 1403 - 1409 | Stimulus Control SL12         |
| 1470 - 1474 | Stimulus Control SL13         |
| 1475 - 1475 | Stimulus Control SL 15        |
| 1485 - 1489 | Stimulus Control SL15         |
| 1490 - 1497 | Target Bus Address            |
| 1/98        | Target Bus Address Length     |
| 1498        | Target Bus Address Parameters |
| 1500        | Target Bus Data Parameters    |
| 1501        | Target Control                |
| 1502        | Target Status                 |
| 1502        | Target Address                |
| 1511        | Target Address Length         |
| 1512        | Target Data Value             |
| 1512        | Target Data Value             |
| 1514 - 1515 | Reserved                      |
| 1516        | Reserved                      |
| 1517        | Reserved                      |
| 1518 - 1521 | Reserved                      |
| 1572 - 1529 | Reserved                      |
| 1522 1525   | Anomaly Control               |
| 1531        | Anomaly Status                |
| 1532 - 1547 | Anomaly Checklist             |
| 1548        | Anomaly Results               |
| 1549        | Reserved                      |
| 1017        |                               |

# VME650 Users Manual

| 1550        | Backplane Test Control |
|-------------|------------------------|
| 1551        | Backplane Test Status  |
| 1552 - 1581 | Backplane Test Signals |
| 1582 - 1599 | Reserved               |
| 1600 - 1629 | Stimulus Event 1       |
| 1630 - 1659 | Stimulus Event 2       |
| 1660 - 1689 | Stimulus Event 3       |
| 1690 - 1719 | Stimulus Event 4       |
| 1720 - 1749 | Stimulus Event 5       |
| 1750 - 1779 | Stimulus Event 6       |
| 1780 - 1809 | Stimulus Event 7       |
| 1810 - 1839 | Stimulus Event 8       |
| 1840 - 2047 | Reserved               |

# Appendix B – API Interface Document

# **Setup Memory Detailed Bit Definitions**

#### **Board Information**

Board Information identifies the name and model of the analyzer, trace buffer size and Firmware and

Hardware versions.

Address

| 0 - 7 | Board Name            |
|-------|-----------------------|
| 8     | Model Number          |
| 9 -10 | Trace Buffer Size     |
| 11    | Firmware Version Code |
| 12    | Hardware Version Code |
| 13    | Reserved              |
| 14    | USB Control           |
| 15    | RS232 Control         |
| 16    | Serial Number Low     |
| 17    | Serial Number High    |
| 18    | Bus Info              |
| 19    | Bus Speed             |

Board Name – Name of product in ASCII. Byte 0 is first letter. (VME850)

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 0    |    |    |    |    |    |    |    |    |
| 1    |    |    |    |    |    |    |    |    |
| 2    |    |    |    |    |    |    |    |    |
| 3    |    |    |    |    |    |    |    |    |
| 4    |    |    |    |    |    |    |    |    |
| 5    |    |    |    |    |    |    |    |    |
| 6    |    |    |    |    |    |    |    |    |
| 7    |    |    |    |    |    |    |    |    |

Model number – A number from 1 to 6 is displayed with a dash after the Board name (2 is a VME850-2)

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 8    |    |    |    |    |    |    |    |    |

Trace Buffer Size – The trace buffer size in Kbytes. (512 is 512K bytes)

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|------|----|----|----|----|----|----|----|-----|
| 9    |    |    |    |    |    |    |    | LSB |
| 10   |    |    |    |    |    |    |    |     |

#### Firmware Version – Use 1 decimal point. (11 is 1.1)

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 11   |    |    |    |    |    |    |    |    |

#### Hardware Version – Use 1 decimal point (10 is 1.0)

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 12   |    |    |    |    |    |    |    |    |

RS232 Control

| byte D7 D6 D5 D4 D3 D2 D1 | la set a | _  |    |    |    |    |       |       |       |
|---------------------------|----------|----|----|----|----|----|-------|-------|-------|
|                           | byte     | D6 | D7 | D5 | D4 | D3 | D2    | D1    | D0    |
| 15 BAUD2 BAUD1            | 15       |    |    |    |    |    | BAUD2 | BAUD1 | BAUD0 |

BAUD2-0 0=9600, 1=19200, 2=28800, 3=38400, 4=57600, 5=115.2K\*, 6=750K\*, 8=4800 \* error is greater then 2% which may not be reliable.

To take effect you must issue a Change RS232 register command (command #29).

Serial Number

| byte | D7 | D6 | D5      | D4 | D3 | D2 | D1 | D0   |
|------|----|----|---------|----|----|----|----|------|
| 16   |    |    |         |    |    |    |    | LOW  |
| 17   |    |    |         |    |    |    |    | HIGH |
| ~ ·  |    |    | 1 63.14 |    |    |    |    |      |

Serial Number in HEX. For example SN# 2164, byte 16 = 64 hex and byte 17 = 21 hex.

Bus Info

| byte | D7 | D6         | D5  | D4      | D3 | D2    | D1 | D0   |
|------|----|------------|-----|---------|----|-------|----|------|
| 18   |    |            |     | VOLTAGE |    | WIDTH |    | MODE |
| LIO1 |    | 511 1 0 01 | . 7 |         |    |       |    |      |

VOLTAGE 0 = 5V, 1=3.3VWIDTH 0=32 bits, 1=64 bits

MODE 0=VME, 1=2eVME, 2=2eSST

Bus Speed

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 19   |    |    |    |    |    |    |    |    |

Bus speed in Mhz (decimal).

#### **Capture - Trace Conditions**

Trace Conditions define what bus events to look for. They are used in trigger and store specifications in the Trace Control definitions. There are 8 conditions and they can be used individually or logically combined. For example E1.(E2+E3) means E2 OR E3 ANDED with E1.

Address

| 20 - 49   | Trace Condition E1 |
|-----------|--------------------|
| 50 - 79   | Trace Condition E2 |
| 80 - 109  | Trace Condition E3 |
| 110 - 139 | Trace Condition E4 |
| 140 - 169 | Trace Condition E5 |
| 170 - 199 | Trace Condition E6 |
| 200 - 229 | Trace Condition E7 |
| 230 - 259 | Trace Condition E8 |
|           |                    |

Trace Condition Bit Definition

| byte | D7      | D6      | D5       | D4    | D3     | D2      | D1   | D0    |
|------|---------|---------|----------|-------|--------|---------|------|-------|
| 0    | A7      | A6      | A5       | A4    | A3     | A2      | A1   | 0     |
| 1    |         |         |          |       |        |         |      |       |
| 2    | A15     | A14     | A13      | A12   | A11    | A10     | A9   | A8    |
| 3    |         |         |          |       |        |         |      |       |
| 4    | A23     | A22     | A21      | A20   | A19    | A18     | A17  | A16   |
| 5    |         |         |          |       |        |         |      |       |
| 6    | A31     | A30     | A29      | A28   | A27    | A26     | A25  | A24   |
| 7    |         |         |          |       |        |         |      |       |
| 8    | D7      | D6      | D5       | D4    | D3     | D2      | D1   | D0    |
| 9    |         |         |          |       |        |         |      |       |
| 10   | D15     | D14     | D13      | D12   | D11    | D10     | D9   | D8    |
| 11   |         |         |          |       |        |         |      |       |
| 12   | D23     | D22     | D21      | D20   | D19    | D18     | D17  | D16   |
| 13   |         |         |          |       |        |         |      |       |
| 14   | D31     | D30     | D29      | D28   | D27    | D26     | D25  | D24   |
| 15   |         |         |          |       |        |         |      |       |
| 16   | BCLR    | BBSY    | AM5      | AM4   | AM3    | AM2     | AM1  | AM0   |
| 17   |         |         |          |       |        |         |      |       |
| 18   | RESET   | WRITE   | LWORD    | BERR  | DTACK  | DS1     | DS0  | AS    |
| 19   |         |         |          |       |        |         |      |       |
| 20   | BG3     | BG2     | BG1      | BG0   | BR3    | BR2     | BR1  | BR0   |
| 21   |         |         |          |       |        |         |      |       |
| 22   | IACK    | IRQ7    | IRQ6     | IRQ5  | IRQ4   | IRQ3    | IRQ2 | IRQ1  |
| 23   |         |         |          |       |        |         |      |       |
| 24   | EXT7    | EXT6    | EXT5     | EXT4  | EXT3   | EXT2    | EXT1 | EXT0  |
| 25   |         |         |          |       |        |         |      |       |
| 26   | Range 1 | Range 0 | SYSCLOCK | IACKI | ACFAIL | SYSFAIL | RESP | RETRY |
| 27   |         |         |          |       |        |         |      |       |

All signals (even bytes) can be set to a 0 or 1 and are followed by a mask (odd bytes). If a mask bit is set to 1 the corresponding signal is used otherwise it is a don't care.

The Range bits specify an additional condition for the AD signals. They define if a match should be <,>, or = . Range 1 Range 0 Condition

| <u>Range I</u> | <u>Range U</u> | Conditio |
|----------------|----------------|----------|
| 0              | 0              | =        |
| 0              | 1              | >        |
| 1              | 0              | <        |
|                |                |          |

### Capture - Trace Controls

Trace Controls define what the analyzer does based on trace conditions. A single trace control can be used or multiple trace control levels can be used. Each control specifies a trace condition (in the IF field), trace condition count (in the OCCURS field), store condition (in the STORE field) and jumps (in the THEN and ELSE fields) to other Trace Controls based on the trace condition. Since logical combinations of trace conditions can be used for both the trace and store fields a compact decoding using nibbles for each element in the expression is used to save space.

| Address   |                  |
|-----------|------------------|
| 260 - 279 | Trace Control L1 |
| 280 - 299 | Trace Control L2 |
| 300 - 319 | Trace Control L3 |
| 320 - 339 | Trace Control L4 |
| 340 - 359 | Trace Control L5 |
| 360 - 379 | Trace Control L6 |
| 380 - 399 | Trace Control L7 |
| 400 - 419 | Trace Control L8 |

#### **Trace Control Definition**

| byte | D7      | D6      | D5      | D4      | D3        | D2        | D1        | D0        |
|------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|
| 0    | TRACE7  | TRACE6  | TRACE5  | TRACE4  | TRACE3    | TRACE2    | TRACE1    | TRACE0    |
| 1    | TRACE15 | TRACE14 | TRACE13 | TRACE12 | TRACE11   | TRACE10   | TRACE9    | TRACE8    |
| 2    | TRACE23 | TRACE22 | TRACE21 | TRACE20 | TRACE19   | TRACE18   | TRACE17   | TRACE16   |
| 3    | TRACE31 | TRACE30 | TRACE29 | TRACE28 | TRACE27   | TRACE26   | TRACE25   | TRACE24   |
| 4    | TRACE39 | TRACE38 | TRACE37 | TRACE36 | TRACE35   | TRACE34   | TRACE33   | TRACE32   |
| 5    | TRACE47 | TRACE46 | TRACE45 | TRACE44 | TRACE43   | TRACE42   | TRACE41   | TRACE40   |
| 6    | TRACE55 | TRACE54 | TRACE53 | TRACE52 | TRACE51   | TRACE50   | TRACE49   | TRACE48   |
| 7    | TRACE63 | TRACE62 | TRACE61 | TRACE60 | TRACE59   | TRACE58   | TRACE57   | TRACE56   |
| 8    | STORE7  | STORE6  | STORE5  | STORE4  | STORE3    | STORE2    | STORE1    | STORE0    |
| 9    | STORE15 | STORE14 | STORE13 | STORE12 | STORE11   | STORE10   | STORE9    | STORE8    |
| 10   | STORE23 | STORE22 | STORE21 | STORE20 | STORE19   | STORE18   | STORE17   | STORE16   |
| 11   | STORE31 | STORE30 | STORE29 | STORE28 | STORE27   | STORE26   | STORE25   | STORE24   |
| 12   | STORE39 | STORE38 | STORE37 | STORE36 | STORE35   | STORE34   | STORE33   | STORE32   |
| 13   | STORE47 | STORE46 | STORE45 | STORE44 | STORE43   | STORE42   | STORE41   | STORE40   |
| 14   | STORE55 | STORE54 | STORE53 | STORE52 | STORE51   | STORE50   | STORE49   | STORE48   |
| 15   | STORE63 | STORE62 | STORE61 | STORE60 | STORE59   | STORE58   | STORE57   | STORE56   |
| 16   | OCCUR7  | OCCUR6  | OCCUR5  | OCCUR4  | OCCUR3    | OCCUR2    | OCCUR1    | OCCUR0    |
| 17   | OCCUR15 | OCCUR14 | OCCUR13 | OCCUR12 | OCCUR11   | OCCUR10   | OCCUR9    | OCCUR8    |
| 18   | F_THEN3 | F_THEN2 | F_THEN1 | F_THEN0 | TRIG_THEN | JMP_THEN2 | JMP_THEN1 | JMP_THEN0 |
| 19   | F_ELSE3 | F_ELSE2 | F_ELSE1 | F_ELSE0 | TRIG_ELSE | JMP_ELSE2 | JMP_ELSE1 | JMP_ELSE0 |
TRACE (xx) Trace Expression – A decoded representation of a trace expression in the IF field of the trace control using nibbles for each element in the expression. The elements are defined as:

| TRACE3 | TRACE2 | TRACE1 | TRACE0 |         |
|--------|--------|--------|--------|---------|
| 0      | 0      | 0      | 0      | None*   |
| 0      | 0      | 0      | 1      | E1      |
| 0      | 0      | 1      | 0      | E2      |
| 0      | 0      | 1      | 1      | E3      |
| 0      | 1      | 0      | 0      | E4      |
| 0      | 1      | 0      | 1      | E5      |
| 0      | 1      | 1      | 0      | E6      |
| 0      | 1      | 1      | 1      | E7      |
| 1      | 0      | 0      | 0      | E8      |
| 1      | 0      | 0      | 1      | . (AND) |
| 1      | 0      | 1      | 0      | + (OR)  |
| 1      | 0      | 1      | 1      | ~ (NOT) |
| 1      | 1      | 0      | 0      | X (XOR) |
| 1      | 1      | 0      | 1      | (       |
| 1      | 1      | 1      | 0      | )       |
| 1      | 1      | 1      | 1      | All*    |

\* The entire expression is set to zeros if the expression is None

\* The entire expression is set to F's if the expression is All

As an example the expression E1+E2.E5 would be decoded as: Byte 7 00011010

| Byte / | (E1) (+)             |
|--------|----------------------|
| Byte 6 | 00101001<br>(E2) (.) |
| Byte 5 | 01010000<br>(E5)     |

.

- STORE (xx) Store Expression A decoded representation of a store expression in the STORE field of the trace control using nibbles for each element in the expression. See TRACExx above for decoding.
- OCCUR (15-0) Occurrence Count The number of occurrences of the trace expression before executing the THEN field. The default value is 1 and the maximum value is 64K.

Special case: A value of zero is valid and indicates no trigger should be used. In this case the board never triggers, Buffer Full never occurs and the only way to stop tracing is by clicking the STOP button. This is a useful feature called GO FOREVER.

| JMP_THEN (2-0) | Jump to another trace control level if the trace expression is true. Values 0 to 7.  |
|----------------|--------------------------------------------------------------------------------------|
| JMP_ELSE (2-0) | Jump to another trace control level if the trace expression is false. Values 0 to 7. |
| TRIG_THEN      | Trigger if trace expression is true. Value is 1 if you want to trigger.              |
| TRIG_ELSE      | Trigger if trace expression is false. Value is 1 if you want to trigger.             |
| F_THEN (3-0)   | Function if true. Perform additional functions if trace expression is true.          |
| F_ELSE (3-0)   | Function if true. Perform additional functions if trace expression is false          |
|                |                                                                                      |

## **Capture - Miscellaneous Trace Controls**

| Address |                         |
|---------|-------------------------|
| 420     | Sample Clock            |
| 421     | Trigger Position        |
| 422     | Power Zoom Sample Clock |
| 423     | Reserved                |
| 424     | GO Control              |

## Sample Clock – Sample clock source

| byte  | е     | D7           | D6 | D5 | D4                | D3        | D2   | D1   | D0   |
|-------|-------|--------------|----|----|-------------------|-----------|------|------|------|
| 420   | )     |              |    |    |                   | CLK3      | CLK2 | CLK1 | CLK0 |
| CLK3- | -0    |              |    |    |                   |           |      |      |      |
| 0     | Sync  | chronous     |    | 8  | 240 ns (4         | Mhz)      |      |      |      |
| 1     | Tran  | nsfer        |    | 9  | 480 ns (2         | Mhz)      |      |      |      |
| 2     | Syst  | em Clock     |    | 10 | 960 ns (1         | Mhz)      |      |      |      |
| 3     | 7.5 r | ns (133 Mhz) |    | 11 | 1.92 us (5        | 20 Khz)   |      |      |      |
| 4     | 15 n  | s (66 Mhz)   |    | 12 | 3.84 us (2        | 60 Khz)   |      |      |      |
| 5     | 30 n  | s (33 Mhz)   |    | 13 | 7.68 us (1        | 30 Khz)   |      |      |      |
| 6     | 60 n  | s (16 Mhz)   |    | 14 | 15.36 us (65 Khz) |           |      |      |      |
| 7     | 120   | ns (8 Mhz)   |    | 15 | 30.72 us (        | 32.5 Khz) |      |      |      |

#### **Trigger** Position

| byte  | e (                     | D7 | D6 | D5 | D4 | D3 | D2   | D1   | D0   |
|-------|-------------------------|----|----|----|----|----|------|------|------|
| 421   |                         |    |    |    |    |    | POS2 | POS1 | POS0 |
| POS2- | 0                       |    |    |    |    |    |      |      |      |
| 0     | 1⁄2                     |    |    |    |    |    |      |      |      |
| 1     | 3⁄4                     |    |    |    |    |    |      |      |      |
| 2     | End                     |    |    |    |    |    |      |      |      |
| 3     | Start                   |    |    |    |    |    |      |      |      |
| 4     | 1⁄4                     |    |    |    |    |    |      |      |      |
|       |                         |    |    |    |    |    |      |      |      |
|       | Power Zoom Sample Clock |    |    |    |    |    |      |      |      |
| byte  | e                       | D7 | D6 | D5 | D4 | D3 | D2   | D1   | D0   |

| Ny lo         |          | 50           | 5             |                | 50            |               |                | 50         |
|---------------|----------|--------------|---------------|----------------|---------------|---------------|----------------|------------|
| 422           |          |              |               |                |               | CLK2          | CLK1           | CLK0       |
| <u>CLK2-0</u> |          |              |               |                |               |               |                |            |
| 0 1.8         | 75 ns    |              |               |                |               |               |                |            |
| 1 3.7         | 5 ns     |              |               |                |               |               |                |            |
| 2 7.5         | ns       |              |               |                |               |               |                |            |
| 3 15          | ns       |              |               |                |               |               |                |            |
| 4 30          | ns       |              |               |                |               |               |                |            |
| 5 60          | ns       |              |               |                |               |               |                |            |
| 6 120         | ns       |              |               |                |               |               |                |            |
| 7 240         | ns       |              |               |                |               |               |                |            |
|               |          |              |               |                |               |               |                |            |
| GO            | Control  |              |               |                |               |               |                |            |
| byte          | D7       | D6           | D5            | D4             | D3            | D2            | D1             | D0         |
| 424           |          |              |               |                |               | LEV2          | LEV1           | LEV0       |
| LEV2-0        | Start GO | at Trace Cor | ntrol Level L | (# + 1). For e | example if LI | EV2-0 is 0 th | en start captu | ring trace |

data using Trace Control 1.

#### **Capture - GO Status**

| Address   |                          |
|-----------|--------------------------|
| 425       | GO Status                |
| 426 - 428 | # Samples before trigger |
| 429 - 431 | # Samples after trigger  |

Go Status

Address

| 00   | Statab |    |            |       |    |      |      |      |
|------|--------|----|------------|-------|----|------|------|------|
| byte | D7     | D6 | D5         | D4    | D3 | D2   | D1   | D0   |
| 425  | ACTIVE |    | TRIGGERED? | FULL? |    | LEV2 | LEV1 | LEV0 |

LEV2-0 Current Active Trace Control Level L(# + 1)

FULL Buffer Full = 1. When Buffer is full tracing stops automatically. Display trace data around trigger.

TRIGGERED Trigger Encountered = 1

ACTIVE Tracing in Progress = 1, Trace Stopped = 0

#### # Samples Before Trigger

|      | 00 |    |    |    |    |    |    |     |
|------|----|----|----|----|----|----|----|-----|
| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
| 426  |    |    |    |    |    |    |    | LSB |
| 427  |    |    |    |    |    |    |    |     |
| 428  |    |    |    |    |    |    |    | MSB |

Number of samples captured before trigger.

#### # Samples After Trigger

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|------|----|----|----|----|----|----|----|-----|
| 429  |    |    |    |    |    |    |    | LSB |
| 430  |    |    |    |    |    |    |    |     |
| 431  |    |    |    |    |    |    |    | MSB |

Number of samples captured after trigger.

## **Capture - Search Trace**

| Address   | -                |  |
|-----------|------------------|--|
| 440       | Search Control   |  |
| 441 - 444 | Search Status    |  |
| 445 - 474 | Search Condition |  |

## Search Control

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1   | D0   |  |
|------|----|----|----|----|----|----|------|------|--|
| 440  |    |    |    |    |    |    | DIR1 | DIR0 |  |

DIR1 DIR0 Search Direction

0 0 Forward

0 1 Backward

1 0 From Beginning

Search Status

| byte | D7     | D6  | D5  | D4  | D3  | D2  | D1  | D0    |
|------|--------|-----|-----|-----|-----|-----|-----|-------|
| 441  | ACTIVE |     |     |     |     |     | B/A | MATCH |
| 442  | S7     | S6  | S5  | S4  | S3  | S2  | S1  | S0    |
| 443  | S15    | S14 | S13 | S12 | S11 | S10 | S9  | S8    |
| 444  | S23    | S22 | S21 | S20 | S19 | S18 | S17 | S16   |

ACTIVE Search in progress = 1

B/A Before (0) / After (1) Trigger

MATCH Search Match Found = 1

S23-S0 Search Sample Number Found (read)

Start Search at Sample Number (write)

Search Condition

| byte    | D7   | D6 | D5    | D4        | D3 | D2 | D1 | D0 |
|---------|------|----|-------|-----------|----|----|----|----|
| 445-474 | same | as | trace | condition |    |    |    |    |

The search condition has the same definition as the trace condition. Signals are either 0, 1 or Don't Care using the mask bit.

## Windows Operation for Capture

## Tracing and Displaying Bus Data

The basic steps to capture and display bus activity are as follows:

- 1. Load Setup Memory
- 2. Send Go Command
- 3. Monitor Status
- 4. Send STOP Command
- 5. Read and Display Trace Data

During each step the Status Bar in the Trace Window reflects the state of trace activity. A text message is displayed on the far right side such as IDLE, LOADING, ACTIVE, SAVED, CAPTURED, READING.

## 1. Load Setup Memory

Setup memory may be loaded any time prior to issuing the GO register command. Use the WRITE SETUP MEMORY register command to load setup information into the analyzer. Writing multiple bytes of setup information by increasing the length parameter will save load time. Display LOADING in the Status Bar.

The setup locations involved in tracing are the:

Trace Conditions Trace Controls Sample Clock Trigger Position GO Control

2. Send GO Command

To start tracing send the GO register command. Display ACTIVE in the Status Bar.

## 3. Monitor Status

Read the GO status, Samples Before and Samples After the Trigger located in the setup memory to monitor trace progress. The sample numbers and a bar graph showing the amount of samples in the trace buffer are displayed in the Status Bar in the Trace Window.

## 4. Send STOP Command

The STOP command should be sent if the BUFFER FULL status is 1 or the user clicks the STOP button.

## 5. Read and Display Trace Data

Issue Read Trace Memory register commands to read trace data. Use the Read Trace Memory Before Trigger register command to read trace data before the trigger and the Read Trace Memory After Trigger register command to read trace data after the trigger. Set the starting address to the sample number. Set the Length register for the amount of bytes to transfer (each sample is 16 bytes).

# The trace window should display the trigger as sample number 0, samples before the trigger are negative and samples after the trigger positive.

#### VME650 Users Manual

Examples:

Read 64 trace samples after the trigger. Write 0 to start address register Write 1024 to length register (64 x 16 bytes/sample) Send Read Trace After Trigger Command

Read Sample –10 to +10 Write 10 to start address register Write 320 to length register (20 x 16 bytes/sample) Send Read Trace Before Trigger Command

## **Performance Analysis**

| Address   |                              |
|-----------|------------------------------|
| 497       | Performance Analysis Control |
| 498       | Performance Analysis Status  |
| 499       | Performance Analysis Type    |
| 500 - 529 | Performance Item 1 Setup     |
| 530 - 559 | Performance Item 2 Setup     |
| 560 - 589 | Performance Item 3 Setup     |
| 590 - 619 | Performance Item 4 Setup     |
| 620 - 649 | Performance Item 5 Setup     |
| 650 - 679 | Performance Item 6 Setup     |
| 680 - 709 | Performance Item 7 Setup     |
| 710 - 739 | Performance Item 8 Setup     |
| 740 - 747 | Performance Total Sample #   |
| 748 - 751 | Performance Item 1 Results   |
| 752 - 755 | Performance Item 2 Results   |
| 756 - 759 | Performance Item 3 Results   |
| 760 - 763 | Performance Item 4 Results   |
| 764 - 767 | Performance Item 5 Results   |
| 768 - 771 | Performance Item 6 Results   |
| 772 - 775 | Performance Item 7 Results   |
| 776 - 799 | Performance Item 8 Results   |

#### Performance Analysis Control

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 497  |    |    |    |    |    |    |    |    |

## Performance Analysis Status

| byte | D7     | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|--------|----|----|----|----|----|----|----|
| 498  | ACTIVE |    |    |    |    |    |    |    |
|      |        |    |    |    |    |    |    |    |

ACTIVE Performance Analysis in progress = 1

## Performance Analysis Type

| byte | D7 | D6 | D5 | D4 | D3 | D2    | D1    | D0    |
|------|----|----|----|----|----|-------|-------|-------|
| 499  |    |    |    |    |    | TYPE2 | TYPE1 | TYPE0 |
|      |    |    |    |    |    |       |       |       |

TYPE (2-0) 0=Utilization, 1=Transfer Rate, 2=Latency, 3=Burst Distribution, 4=Statistics

## Performance Item

| byte | - | D7   | D6   | D5   | D4   | D3   | D2   | D1   | D0   |
|------|---|------|------|------|------|------|------|------|------|
| 0    | L | AD7  | AD6  | AD5  | AD4  | AD3  | AD2  | AD1  | AD0  |
| 1    | 0 | AD15 | AD14 | AD13 | AD12 | AD11 | AD10 | AD9  | AD8  |
| 2    | W | AD23 | AD22 | AD21 | AD20 | AD19 | AD18 | AD17 | AD16 |
| 3    |   | AD31 | AD30 | AD29 | AD28 | AD27 | AD26 | AD25 | AD24 |
| 4    | Α | AD39 | AD38 | AD37 | AD36 | AD35 | AD34 | AD33 | AD32 |
| 5    | D | AD47 | AD46 | AD45 | AD44 | AD43 | AD42 | AD41 | AD40 |
| 6    | R | AD55 | AD54 | AD53 | AD52 | AD51 | AD50 | AD49 | AD48 |
| 7    | - | AD63 | AD62 | AD61 | AD60 | AD59 | AD58 | AD57 | AD56 |
| 8    | Н | AD7  | AD6  | AD5  | AD4  | AD3  | AD2  | AD1  | AD0  |
| 9    | Ι | AD15 | AD14 | AD13 | AD12 | AD11 | AD10 | AD9  | AD8  |
| 10   | G | AD23 | AD22 | AD21 | AD20 | AD19 | AD18 | AD17 | AD16 |
| 11   | Н | AD31 | AD30 | AD29 | AD28 | AD27 | AD26 | AD25 | AD24 |
| 12   |   | AD39 | AD38 | AD37 | AD36 | AD35 | AD34 | AD33 | AD32 |

VME650 Users Manual

#### Appendix B – API Interface Document

| 13 | Α | AD47 | AD46 | AD45 | AD44   | AD43   | AD42   | AD41   | AD40   |
|----|---|------|------|------|--------|--------|--------|--------|--------|
| 14 | D | AD55 | AD54 | AD53 | AD52   | AD51   | AD50   | AD49   | AD48   |
| 15 | R | AD63 | AD62 | AD61 | AD60   | AD59   | AD58   | AD57   | AD56   |
| 16 |   |      |      |      | CYCLE4 | CYCLE3 | CYCLE2 | CYCLE1 | CYCLE0 |
| 17 |   |      |      |      | ITEM4  | ITEM3  | ITEM2  | ITEM1  | ITEM0  |

AD (63-0) Address with mask bits

CYCLE (4-0) Cycle Type

- 0 All Cycles
- 1 Memory
- 2 Memory Read
- 3 Memory Write
- 14 Interrupt Acknowledge

- 16 Event1 E1
- 17 Event2 E2 18 Event3 – E3
- 19 Event 4 E4
- 20 Event5 E5
- 21 Event6 E6
- 22 Event7 E7
- 23 Event8 E8

Note: Events are the 8 trace conditions.

|       |                     | uniforent for each pe | itormanee anarysis | type.        | 1                  |
|-------|---------------------|-----------------------|--------------------|--------------|--------------------|
| ITEM  | Utilization         | Transfer Rate         | Latency            | Burst        | Statistics         |
| (4-0) |                     |                       |                    | Distribution |                    |
| 0     | None                | None                  | None               | None         | None               |
| 1     | Bus Busy *          | Cycle *               | Master *           | Cycle *      | Cycle *            |
| 2     | Bus Idle *          | GNT0 *                | Target (Init) *    |              | Master Abort       |
| 3     | Transfers *         | GNT1 *                | Target *           |              | Target Abort       |
| 4     | Address Phase *     | GNT2 *                | Arbitration *      |              | Target Retry       |
| 5     | Data Phase *        | GNT3 *                |                    |              | Disconnect w/data  |
| 6     | Wait States *       |                       |                    |              | Disconnect wo/data |
| 7     | Master Efficiency * |                       |                    |              | Split Response     |
| 8     | Target Efficiency * |                       |                    |              |                    |
| 9     |                     |                       |                    |              |                    |
| 10    |                     |                       |                    |              |                    |
| 11    |                     |                       |                    |              |                    |
| 12    |                     |                       |                    |              |                    |
| 13    |                     |                       |                    |              |                    |
| 14    |                     |                       |                    |              |                    |

ITEM (4-0) Item selection is different for each performance analysis type:

\* Load these items as the default For burst distribution defaults are Cycle: All Cycle: Mem For Statistics defaults are Cycle: Mem Rd Cycle: Mem Wr

## **Anomaly Detection**

| 1530        | Anomaly Control   |
|-------------|-------------------|
| 1531        | Anomaly Status    |
| 1532 - 1547 | Anomaly Checklist |
| 1548        | Anomaly Results   |

#### Anomaly Control

| byte     | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|----------|----|----|----|----|----|----|----|----|
| 1530     |    |    |    |    |    |    |    |    |
| Not Used |    |    |    |    |    |    |    |    |

Not Used

Anomaly Status

| byte   | D7      | D6           | D5           | D4 | D3 | D2 | D1 | D0 |
|--------|---------|--------------|--------------|----|----|----|----|----|
| 1531   | ACTIVE  |              |              |    |    |    |    |    |
| ACTIVE | Anomaly | detection in | progress = 1 |    |    |    |    |    |

## Anomaly Checklist

| byte | D7          | D6          | D5          | D4          | D3          | D2          | D1          | D0          |
|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1532 | Anomaly 8   | Anomaly 7   | Anomaly 6   | Anomaly 5   | Anomaly 4   | Anomaly 3   | Anomaly 2   | Anomaly 1   |
| 1533 | Anomaly 16  | Anomaly 15  | Anomaly 14  | Anomaly 13  | Anomaly 12  | Anomaly 11  | Anomaly 10  | Anomaly 9   |
| 1534 | Anomaly 24  | Anomaly 23  | Anomaly 22  | Anomaly 21  | Anomaly 20  | Anomaly 19  | Anomaly18   | Anomaly 17  |
| 1535 | Anomaly 32  | Anomaly 31  | Anomaly 30  | Anomaly 29  | Anomaly 28  | Anomaly 27  | Anomaly 26  | Anomaly 25  |
| 1536 | Anomaly 40  | Anomaly 39  | Anomaly 37  | Anomaly 37  | Anomaly 36  | Anomaly 35  | Anomaly 34  | Anomaly 33  |
| 1537 | Anomaly 48  | Anomaly 47  | Anomaly 46  | Anomaly 45  | Anomaly 44  | Anomaly 43  | Anomaly 42  | Anomaly 41  |
| 1538 | Anomaly 56  | Anomaly 55  | Anomaly 54  | Anomaly 53  | Anomaly 52  | Anomaly 51  | Anomaly 50  | Anomaly 49  |
| 1539 | Anomaly 64  | Anomaly 63  | Anomaly 62  | Anomaly 61  | Anomaly60   | Anomaly59   | Anomaly 58  | Anomaly 57  |
| 1540 | Anomaly 72  | Anomaly 71  | Anomaly 70  | Anomaly 69  | Anomaly 68  | Anomaly 67  | Anomaly 66  | Anomaly 65  |
| 1541 | Anomaly 80  | Anomaly 79  | Anomaly 78  | Anomaly 77  | Anomaly 76  | Anomaly 75  | Anomaly 74  | Anomaly 73  |
| 1542 | Anomaly 88  | Anomaly 87  | Anomaly 86  | Anomaly 85  | Anomaly 84  | Anomaly 83  | Anomaly 82  | Anomaly 81  |
| 1543 | Anomaly 96  | Anomaly 95  | Anomaly 94  | Anomaly 93  | Anomaly 92  | Anomaly 91  | Anomaly 90  | Anomaly 89  |
| 1544 | Anomaly 104 | Anomaly 103 | Anomaly 102 | Anomaly 101 | Anomaly 100 | Anomaly 99  | Anomaly 98  | Anomaly 97  |
| 1545 | Anomaly 112 | Anomaly 111 | Anomaly 110 | Anomaly 109 | Anomaly 108 | Anomaly 107 | Anomaly 106 | Anomaly 105 |
| 1546 | Anomaly 120 | Anomaly 119 | Anomaly 118 | Anomaly 117 | Anomaly 116 | Anomaly 115 | Anomaly 114 | Anomaly 113 |
| 1547 | Anomaly 128 | Anomaly 127 | Anomaly 126 | Anomaly 125 | Anomaly 124 | Anomaly 123 | Anomaly 122 | Anomaly 121 |

Each bit corresponds to an anomaly. To detect an anomaly set its bit to zero, to ignore the anomaly set it to one.

#### Anomaly Detection Numbers

| Master Timii | ng Violations |                                                               |
|--------------|---------------|---------------------------------------------------------------|
| Anomaly      | Spec Rule     | Description                                                   |
| Number       |               |                                                               |
| 68.          | 2.10a         | Illegal Combination of DS[1:0]*, A1 and LWORD*                |
| 69.          | 2.30          | Use of reserved Address Modifiers                             |
| 70.          | 2.12a         | BLT cycle crossing 256 byte boundary                          |
| 71.          | 2.78          | MBLT cycle crossing 2048 byte boundary                        |
| 72.          | 2.79          | BLT cycle mixing data widths                                  |
| 73.          | 2.80          | BLT cycle using unaligned transfers                           |
| 74.          | 2.82          | LOCK* stays asserted after master released                    |
| 75.          | 2.83          | BBSY* stays asserted after last locked transfer               |
| 76.          | 2.84          | Lock Command not terminated                                   |
| 77.          | 2.91          | Retry during data phase                                       |
| 78.          | 2.13a         | Both DTACK* and BERR* active                                  |
| 79.          | 2.14a         | Data bus driven before end of previous cycle                  |
| 80.          | 2.16          | Data not maintained until DS* goes high                       |
| 81.          | 2.17a         | DS* driven high before acknowledge                            |
| 82.          | 2.27          | Bus driven before AS* inactive                                |
| 83.          | 2.29          | AS* driven low before AS* is inactive for 60ns                |
| 84.          | 2.30          | AS* driven low before IACK* is inactive for 35ns              |
| 85.          | 2.35          | DSA* low before DTACK* and BERR* are high                     |
| 86.          | 2.36          | DSA* low before AS* is low                                    |
| 87.          | 2.37          | DSA* low before both DS0* and DS1* are high for 40 ns         |
| 88.          | 2.38          | DSA* low before WRITE* is valid for 35 ns                     |
| 89.          | 2.40          | Address invalid before DTACK* or BERR*                        |
| 90.          | 2.41          | Address invalid for RMW cycle before second DTACK* or BERR*   |
| 91.          | 2.42          | Address Modifier invalid before last DTACK* or BERR*          |
| 92.          | 2.43          | Address changed before 40ns after AS* low                     |
| 93.          | 2.45          | AS* held low less then 40ns                                   |
| 94.          | 2.46a         | DSA* not held low until falling edge of DTACK*, RETRY*, BERR* |
| 95.          | 2.48          | Data changed before DTACK*, RETRY* or BERR*                   |
| 96.          | 2.49          | WRITE* level changed before DSB* is high for 10ns             |
| 97.          | 2.95          | DS[1:0] not high within 200ns of RETRY*                       |

#### Slave Timing Violations

| Anomaly | Spec Rule | Description                                                  |
|---------|-----------|--------------------------------------------------------------|
| Number  | -         | -                                                            |
| 98.     | 2.55      | DTACK* or BERR* driven low before 30ns after DSA* goes low   |
| 99.     | 2.97      | DTACK* driven before 30ns after first falling edge of DSA*   |
| 100.    | 2.56a     | Data changed before DSA* goes high                           |
| 101.    | 2.57      | DTACK* or BERR* goes high before both DS0* and DS1* are high |
| 102.    | 2.99      | RETRY* goes low before 30ns after DSA* goes low              |
| 103.    | 2.100     | RETRY* goes low before 30ns after falling edge of DSA*       |
| 104.    | 2.101     | DTACK* or BERR* driven low before 225ns after RETRY* is low  |
| 105.    | 2.103     | RETRY* goes high before both DS1* and DS0* are high          |
| 106.    | 2.104     | RETRY* not high after both DS1* and DS0* are high for 30ns   |

#### Arbitration Timing Violations

| Anomaly | Spec Rule | Description                               |
|---------|-----------|-------------------------------------------|
| Number  |           |                                           |
| 107.    | 3.6       | New Bus Grant before rising edge of BBSY* |

| 108. | 3.15 | BGIN*[3:0] driven low before BBSY* is high for 40ns       |
|------|------|-----------------------------------------------------------|
| 109. | 3.7  | BBSY* low for less then 90ns                              |
| 110. | 3.9  | BBSY* low less then 30ns after release of bus request     |
| 111. | 3.10 | BBSY* goes high before bus grant goes high                |
| 112. | 3.11 | Bus request withdrawn less then 50ns after BBSY* goes low |

#### Interrupt Timing Violations

| Anomaly | Spec Rule | Description                                                   |
|---------|-----------|---------------------------------------------------------------|
| Number  |           |                                                               |
| 113.    | 4.15      | IACK* driven before AS* goes high                             |
| 114.    | 4.17      | AS* driven low before AS* is inactive for 60ns                |
| 115.    | 4.18      | AS* driven low before IACK* is active for 35ns                |
| 116.    | 4.19      | AS* high for less then 40ns between consecutive INTA cycles   |
| 117.    | 4.20      | DSA* low before DTACK* and BERR* are high                     |
| 118.    | 4.21      | DSA* low before AS* is low                                    |
| 119.    | 4.22      | DSA* low before both DS0* and DS1* are high for 40 ns         |
| 120.    | 4.23      | DSA* low before WRITE* is valid for 35 ns                     |
| 121.    | 4.24      | DSB* low more then 10ns after DSA* is low                     |
| 122.    | 4.25      | Interrupt Acknowledge code valid until falling edge of DTACK* |
| 123.    | 4.26      | IACK* goes high before falling edge of DTACK* or BERR*        |
| 124.    | 4.27      | AS* goes high before DTACK* or BERR* goes low                 |
| 125.    | 4.28      | AS* held low less then 40ns                                   |
| 126.    | 4.29      | DSA* driven high before DTACK* or BERR* go low                |
| 127.    | 4.30      | DSB* driven high before DTACK* or BERR* go low                |
| 128.    | 4.31      | WRITE* high for less then 10ns after data strobes are high    |
| 129.    | 4.37      | DTACK* or BERR* driven low before 30ns after DSA* goes low    |
| 130.    | 4.38      | Data changed before DSA* goes high                            |
| 131.    | 4.39      | DTACK* or BERR* goes high before both DS0* and DS1* are high  |

#### Other Timing Violations

| Anomaly | Spec Rule | Description                     |
|---------|-----------|---------------------------------|
| Number  |           |                                 |
| 132.    | 5.2       | SYSRESET* not held for 200ms    |
| 133.    | 5.3       | No SYSCLK when SYSRESET* is low |

#### Anomaly Results

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 1548 |    |    |    |    |    |    |    |    |

Anomaly error number found. This byte contains a zero if no anomaly is found; otherwise it has the anomaly

number of the anomaly shown in the checklist above. The anomaly number is cleared from this byte after it is read.

#### Windows Operation for Anomaly Detection

#### After clicking GO:

- 1. Load the anomaly checklist.
- 2. Clear the anomaly results window.
- 3. Send the Start Anomaly Detection command. (Display **ACTIVE** in the status bar)
- 4. Poll the anomaly results byte every second.
- 5. If the anomaly results byte is zero, don't display anything in the results window.
- **6.** If the anomaly results byte is non-zero, display the anomaly name that corresponds to the anomaly number.

#### After clicking STOP:

1. Send the Stop Anomaly Detection command. (Display IDLE in the status bar)

The default anomaly checklist should be all anomalies checked (all bits set to zero in the anomaly checklist).

#### Master

| Address   |                             |
|-----------|-----------------------------|
| 800       | Master Control              |
| 801       | Master Status               |
| 802       | Master Address Space        |
| 803       | Master Address Size         |
| 804 - 811 | Master Start Address        |
| 812       | Master Start Address Length |
| 813       | Master Data Size            |
| 814       | Master Data Cycle           |
| 815       | Master Data Type            |
| 816 - 847 | Master Data                 |
| 848       | Address Modifier            |
| 849       | Bus Request Level           |

## Master Control

| 1              |     |                |        | 1            |    |    |      |      |      |
|----------------|-----|----------------|--------|--------------|----|----|------|------|------|
| byte D7        |     | D7             | D6     | D5           | D4 | D3 | D2   | D1   | D0   |
| 8              | 800 |                |        |              |    |    | CMD2 | CMD1 | CMD0 |
| CMD2 CMD1 CMD0 |     | <u>D1 CMD0</u> | Descri | <u>ption</u> |    |    |      |      |      |
| 0              | 0   | 0              | None   |              |    |    |      |      |      |
| 0              | 0   | 1              | Read   |              |    |    |      |      |      |
| 0              | 1   | 0              | Write  |              |    |    |      |      |      |
| 0              | 1   | 1              | Displa | У            |    |    |      |      |      |
| 1              | 0   | 0              | Verify |              |    |    |      |      |      |
| 1              | 0   | 1              | Test   |              |    |    |      |      |      |
| 1              | 1   | 0              | Compa  | are          |    |    |      |      |      |

#### Master Status

| byte          | D7                                | D6      | D5      | D4     | D3 | D2      | D1      | D0      |
|---------------|-----------------------------------|---------|---------|--------|----|---------|---------|---------|
| 801           | ACTIVE                            | NO DSEL | NO TRDY | NO GNT |    | STATUS2 | STATUS1 | STATUS0 |
| <u>ACTIVE</u> | Master transfer in progress = $1$ |         |         |        |    |         |         |         |

| <u>STATUS2</u> | <u>STATUS1</u> | <u>STATUS0</u> | <u>Description</u>                    |
|----------------|----------------|----------------|---------------------------------------|
| 0              | 0              | 0              | None                                  |
| 0              | 0              | 1              | Pass (for Verify, Test and Compare)   |
| 0              | 1              | 0              | Fail (for Verify, Test and Compare)   |
| NO TRDY        | No Target Ac   | knowledge      | · · · · · · · · · · · · · · · · · · · |

NO DSEL No Device Select

NO GNT No Bus Grant

#### Display status in a small box in command section of master window.

#### Master Address Space

| byte   | D7            | D6     | D5           | D4 | D3 | D2 | D1     | D0     |
|--------|---------------|--------|--------------|----|----|----|--------|--------|
| 802    |               |        |              |    |    |    | SPACE1 | SPACE0 |
| SPACE1 | <u>SPACE0</u> | Descri | <u>ption</u> |    |    |    |        |        |
| 0      | 0             | Memor  | У            |    |    |    |        |        |
| 0      | 1             | I/O    |              |    |    |    |        |        |
| 1      | 0             | Config | uration      |    |    |    |        |        |

#### Master Address Size

| Masici Au                            |                                                     |               |              |             |               |               |          |       |  |  |  |
|--------------------------------------|-----------------------------------------------------|---------------|--------------|-------------|---------------|---------------|----------|-------|--|--|--|
| byte                                 | D7                                                  | D6            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
| 803                                  |                                                     |               |              |             |               |               | SIZE1    | SIZE0 |  |  |  |
| SIZE1 SIZE                           | EO Descrinti                                        | on            | •            |             |               | •             |          |       |  |  |  |
| $\frac{\underline{\text{SIEE1}}}{0}$ | <u>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 </u>       | <u></u>       |              |             |               |               |          |       |  |  |  |
| 0 1                                  | 16                                                  |               |              |             |               |               |          |       |  |  |  |
| 0 1                                  | 10                                                  |               |              |             |               |               |          |       |  |  |  |
| 1 0                                  | 32                                                  |               |              |             |               |               |          |       |  |  |  |
| 1 1                                  | 64                                                  |               |              |             |               |               |          |       |  |  |  |
|                                      |                                                     | 1             | Master Start | Address (by | te 804 is LSE | 3)            |          |       |  |  |  |
| byte                                 | D7                                                  | D6            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
| 804-811                              |                                                     |               |              |             |               |               |          |       |  |  |  |
|                                      | <u>.</u>                                            |               | •            | ļ.          | L             | •             | <u>,</u> | •     |  |  |  |
|                                      | Master Start Address Length (Address Length mar 22) |               |              |             |               |               |          |       |  |  |  |
| byte                                 | D7                                                  |               | D5           | Lengin (Au  |               | $\frac{1}{1}$ | D1       | D0    |  |  |  |
| 912                                  | זט                                                  | 00            | 03           | D4          | 03            | 02            |          | 00    |  |  |  |
| 012                                  |                                                     |               |              |             |               |               |          |       |  |  |  |
|                                      | <b>a</b> :                                          |               |              |             |               |               |          |       |  |  |  |
| Master Data                          | a Size                                              |               |              |             |               | _             |          |       |  |  |  |
| byte                                 | D7                                                  | D6            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
| 813                                  |                                                     |               |              |             |               |               | SIZE1    | SIZE0 |  |  |  |
| <u>SIZE1</u> SIZI                    | <u>E0</u> <u>Descripti</u>                          | on            |              |             |               |               |          |       |  |  |  |
| 0 0                                  | 8                                                   |               |              |             |               |               |          |       |  |  |  |
| 0 1                                  | 16                                                  |               |              |             |               |               |          |       |  |  |  |
| 1 0                                  | 32                                                  |               |              |             |               |               |          |       |  |  |  |
| 1 0                                  | 52                                                  |               |              |             |               |               |          |       |  |  |  |
|                                      | 04                                                  |               |              |             |               |               |          |       |  |  |  |
| Master Data                          | a Cycle                                             | 1             | 1            | r           | r             | 1             | r        |       |  |  |  |
| byte                                 | D7                                                  | D6            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
| 814                                  |                                                     |               |              |             |               |               |          | CYCLE |  |  |  |
| CYCLE                                | 0 = Singl                                           | le, 1 = Burst |              |             |               |               |          |       |  |  |  |
| Master Data                          | a Type                                              |               |              |             |               |               |          |       |  |  |  |
| bvte                                 | D7                                                  | D6            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
| 815                                  |                                                     |               |              |             |               |               | TYPE1    | TYPE0 |  |  |  |
| TYPE1 TYP                            | PEO Descripti                                       | on            | 1            | 1           | 1             | 1             | 1        |       |  |  |  |
| $\frac{1}{0}$                        | <u>0</u>                                            | Value         |              |             |               |               |          |       |  |  |  |
| 0                                    | 1                                                   |               |              |             |               |               |          |       |  |  |  |
| U                                    | 1                                                   | гне           |              |             |               |               |          |       |  |  |  |
| 1                                    | 0                                                   | Target        |              |             |               |               |          |       |  |  |  |
|                                      |                                                     |               |              |             |               |               |          |       |  |  |  |
| Master Data                          | a (byte 816 is                                      | s LSB)        |              |             |               |               |          |       |  |  |  |
| byte                                 | D7                                                  | D6            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
| 816-847                              |                                                     |               |              |             |               |               |          |       |  |  |  |
|                                      |                                                     |               |              | •           |               |               | •        |       |  |  |  |
| Address Ma                           | odifier                                             |               |              |             |               |               |          |       |  |  |  |
| hute                                 | <b>D7</b>                                           | De            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
|                                      | וט                                                  |               | 05           | U4          | 50            |               |          |       |  |  |  |
| 040                                  |                                                     | I             | I            | <u> </u>    |               | I             | <u> </u> | I     |  |  |  |
| <b>D D</b>                           |                                                     |               |              |             |               |               |          |       |  |  |  |
| Bus Reques                           | st Level                                            | I             | I            | 1           | 1             | I             | 1        |       |  |  |  |
| byte                                 | D7                                                  | D6            | D5           | D4          | D3            | D2            | D1       | D0    |  |  |  |
| 849                                  |                                                     |               |              |             | BR3           | BR2           | BR1      | BR0   |  |  |  |

**849** To select set BR# = 1

## Windows Operation for Master

#### After clicking GO:

- 1 Clear the results window.
- 2. For a Write command load master data into setup memory.
- 3. Load the master parameters into setup memory including the start address and length. The length cannot be greater then 32. If more then 32 bytes are needed repeat this procedure changing the start address.
- 4. Send the Start Exerciser command. (Display **ACTIVE** in the status bar)
- 5. Read the status byte to check if master is finished and if there were any errors.
- 6. Display any errors in results window. For the Display command show master data read in setup memory in the display window.
- 7. If the Repeat field is greater then 1 repeat these steps.
- 8. When all the bytes are complete display **IDLE** in the status bar

#### After clicking STOP:

9. Send the Stop Exerciser command to abort the current command. (Display IDLE in the status bar)

## Target

| Address   |                               |
|-----------|-------------------------------|
| 1490-1497 | Target Bus Address            |
| 1498      | Target Bus Address Length     |
| 1499      | Target Bus Address Parameters |
| 1500      | Target Bus Data Parameters    |
| 1501      | Target Control                |
| 1502      | Target Status                 |
| 1503-1510 | Target Address                |
| 1511      | Target Address Length         |
| 1512      | Target Data Value             |
| 1513      | Target Data Parameters        |

#### Target Bus Address

| byte                                 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
|--------------------------------------|----|----|----|----|----|----|----|----|--|
| 1490-1497                            |    |    |    |    |    |    |    |    |  |
| Deve Chant A Idamen Inde 1400 := LCD |    |    |    |    |    |    |    |    |  |

Bus Start Address – byte 1490 is LSB

#### Target Bus Address Length

| U    |    | 0  |    |    |    |    |    |    |
|------|----|----|----|----|----|----|----|----|
| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| 1498 |    |    |    |    |    |    |    |    |
|      |    |    |    |    |    |    |    |    |

Value - 0=0 byte, 1=1 byte, 2=2 bytes, 3=4 bytes, 4=8 bytes, 5=16 bytes, 6=32 bytes, 7=64 bytes, 8=128 bytes 9=256 bytes, 10=512 bytes, 11=1KB, 12=2KB, 13=4KB, 14=8KB, 15=16KB, 16=32KB, 17=64KB, 18=128KB, 19=256KB, 20=512KB, 21=1MB, 22=2MB, 23=4MB, 24=8MB

#### Target Bus Address Parameters

| byte   | D7            | D6            | D5           | D4 | D3 | D2 | D1     | D0     |
|--------|---------------|---------------|--------------|----|----|----|--------|--------|
| 1499   |               |               |              |    |    |    | SPACE1 | SPACE0 |
| SPACE1 | <u>SPACE0</u> | <u>Descri</u> | <u>ption</u> |    |    |    |        |        |
| 0      | 0 M           | emory         |              |    |    |    |        |        |

#### Target Bus Data Parameters

| byte                                                | D7    | D6    | D5         | D4  | D3        | D2        | D1    | D0    |  |
|-----------------------------------------------------|-------|-------|------------|-----|-----------|-----------|-------|-------|--|
| 1500                                                | WS3   | WS2   | WS1        | WS0 | RESPONSE1 | RESPONSE0 | SIZE1 | SIZE0 |  |
| <u>WS3 - 0</u> Wait States, value = 0 to 15 decimal |       |       |            |     |           |           |       |       |  |
| RESPONSE1 RESPONSE0 Description                     |       |       |            |     |           |           |       |       |  |
| 0                                                   | 0     | Norn  | nal        |     |           |           |       |       |  |
| 0                                                   | 1     | Retry | 7          |     |           |           |       |       |  |
| 1                                                   | 0     | Disco | Disconnect |     |           |           |       |       |  |
|                                                     |       |       |            |     |           |           |       |       |  |
| SIZE1                                               | SIZE0 | Desc  | ription    |     |           |           |       |       |  |
| 0                                                   | 0     | 8 bit |            |     |           |           |       |       |  |
| 0                                                   | 1     | 16 bi | t          |     |           |           |       |       |  |
| 1                                                   | 0     | 32 bi | 32 bit     |     |           |           |       |       |  |
| 1                                                   | 1     | 64 bi | t          |     |           |           |       |       |  |
|                                                     |       |       |            |     |           |           |       |       |  |

Target Control

| byte | D7     | D6 | D5 | D4 | D3 | D2   | D1   | D0   |
|------|--------|----|----|----|----|------|------|------|
| 1501 | TARGET |    |    |    |    | CMD2 | CMD1 | CMD0 |
|      | ENABLE |    |    |    |    |      |      |      |

TARGET ENABLE 0=Disable, 1=Enable

| CM | D2 <u>CM</u> | D1 CMD0 | Description |
|----|--------------|---------|-------------|
| 0  | 0            | 0       | None        |
| 0  | 0            | 1       | Read        |
| 0  | 1            | 0       | Write       |
| 0  | 1            | 1       | Compare     |

## Target Status

| byte   | D7         | D6             | D5        | D4 | D3 | D2      | D1      | D0      |
|--------|------------|----------------|-----------|----|----|---------|---------|---------|
| 1502   | ACTIVE     |                |           |    |    | STATUS2 | STATUS1 | STATUS0 |
| ACTIVE | Target tra | unsfer in prog | gress = 1 |    |    |         |         |         |

| STATUS2 | STATUS1 | STATUS0 | Description                         |
|---------|---------|---------|-------------------------------------|
| 0       | 0       | 0       | None                                |
| 0       | 0       | 1       | Pass (for Verify, Test and Compare) |
| 0       | 1       | 0       | Fail (for Verify, Test and Compare) |
|         |         |         |                                     |

#### Display status in a small box in command section of target window.

| Target A | ddress |
|----------|--------|
|          |        |

| byte      | D7 | D6 | D5  | D4 | D3 | D2 | D1 | D0 |
|-----------|----|----|-----|----|----|----|----|----|
| 1503-1510 |    |    |     |    |    |    |    |    |
| - ~       |    |    | ~ - |    |    |    |    |    |

Target Start Address – byte 1503 is LSB

Target Address Length

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 1511 |    |    |    |    |    |    |    |    |
|      |    |    |    |    |    |    |    |    |

Target Address Length - max 255

Target Data Value

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|----|----|----|----|----|----|----|----|
| 1512 |    |    |    |    |    |    |    |    |

Target Address Length – 8 bit hex value

#### Target Data Parameters

| byte         | D7           | D6            | D5           | D4 | D3 | D2 | D1    | D0    |
|--------------|--------------|---------------|--------------|----|----|----|-------|-------|
| 1513         |              |               |              |    |    |    | TYPE1 | TYPE0 |
| <u>TYPE1</u> | <u>TYPE0</u> | <u>Descri</u> | <u>ption</u> |    |    |    |       |       |
| 0            | 0            | Value         |              |    |    |    |       |       |
| 0            | 1            | File          |              |    |    |    |       |       |

## Windows Operation for Target

Always send the Bus Address, Bus Data and Bus Control parameters to setup memory whenever a field is modified. This includes any setup memory parameters from addresses 1490 to 1501.

The rest of the parameters, setup memory addresses 1502 to 1513, deal with reading and writing to the target memory.

#### After clicking GO:

- 1. Display **ACTIVE** in the status bar.
- 2. For a Write command perform a Write Target Memory command. For a Read command perform a Read Target Memory command and display the data in the display window.
- 3. When all the bytes are complete display **IDLE** in the status bar.

#### After clicking STOP:

10. Stop any read or write to target memory. (Display IDLE in the status bar)

## **Stimulus – Conditions and Controls**

The stimulus function drives user defined signal patterns on the bus based on bus events. There are 16 stimulus conditions (S1 thru S16) and 16 stimulus control levels (SL1 thru SL16). Each stimulus level defines an event to look for (EV1 thru EV8) and the stimulus to drive, another level to jump to, a wait and duration time if the event occurs or does not occur. The stimulus definitions are very similar to the capture definitions.

Stimulus Status

| byte  | D7        | D6            | D5            | D4          | D3  | D2  | D1  | D0  |
|-------|-----------|---------------|---------------|-------------|-----|-----|-----|-----|
| 929   | ACTIVE    |               |               |             | SL3 | SL2 | SL1 | SL0 |
| SL3-0 | Current A | Active Stimul | lus Control L | evel SL(# + | 1)  |     |     |     |

```
ACTIVE Stimulus in Progress = 1, Stimulus Stopped = 0
```

**Stimulus Conditions** 

| 930 - 959   | Stimulus Condition S1  |
|-------------|------------------------|
| 960 -989    | Stimulus Condition S2  |
| 990 - 1019  | Stimulus Condition S3  |
| 1020 - 1049 | Stimulus Condition S4  |
| 1050 - 1079 | Stimulus Condition S5  |
| 1080 - 1109 | Stimulus Condition S6  |
| 1110 - 1139 | Stimulus Condition S7  |
| 1140 - 1169 | Stimulus Condition S8  |
| 1170 - 1199 | Stimulus Condition S9  |
| 1200 - 1229 | Stimulus Condition S10 |
| 1230 - 1259 | Stimulus Condition S11 |
| 1260 - 1289 | Stimulus Condition S12 |
| 1290 - 1319 | Stimulus Condition S13 |
| 1320 - 1349 | Stimulus Condition S14 |
| 1350 - 1379 | Stimulus Condition S15 |
| 1380 - 1409 | Stimulus Condition S16 |

| byte | D7      | D6      | D5       | D4    | D3     | D2      | D1   | D0    |
|------|---------|---------|----------|-------|--------|---------|------|-------|
| 0    | A7      | A6      | A5       | A4    | A3     | A2      | A1   | 0     |
| 1    |         |         |          |       |        |         |      |       |
| 2    | A15     | A14     | A13      | A12   | A11    | A10     | A9   | A8    |
| 3    |         |         |          |       |        |         |      |       |
| 4    | A23     | A22     | A21      | A20   | A19    | A18     | A17  | A16   |
| 5    |         |         |          |       |        |         |      |       |
| 6    | A31     | A30     | A29      | A28   | A27    | A26     | A25  | A24   |
| 7    |         |         |          |       |        |         |      |       |
| 8    | D7      | D6      | D5       | D4    | D3     | D2      | D1   | D0    |
| 9    |         |         |          |       |        |         |      |       |
| 10   | D15     | D14     | D13      | D12   | D11    | D10     | D9   | D8    |
| 11   |         |         |          |       |        |         |      |       |
| 12   | D23     | D22     | D21      | D20   | D19    | D18     | D17  | D16   |
| 13   |         |         |          |       |        |         |      |       |
| 14   | D31     | D30     | D29      | D28   | D27    | D26     | D25  | D24   |
| 15   |         |         |          |       |        |         |      |       |
| 16   | BCLR    | BBSY    | AM5      | AM4   | AM3    | AM2     | AM1  | AM0   |
| 17   |         |         |          |       |        |         |      |       |
| 18   | RESET   | WRITE   | LWORD    | BERR  | DTACK  | DS1     | DS0  | AS    |
| 19   |         |         |          |       |        |         |      |       |
| 20   | BG3     | BG2     | BG1      | BG0   | BR3    | BR2     | BR1  | BR0   |
| 21   |         |         |          |       |        |         |      |       |
| 22   | IACK    | IRQ7    | IRQ6     | IRQ5  | IRQ4   | IRQ3    | IRQ2 | IRQ1  |
| 23   |         |         |          |       |        |         |      |       |
| 24   | EXT7    | EXT6    | EXT5     | EXT4  | EXT3   | EXT2    | EXT1 | EXT0  |
| 25   |         |         |          |       |        |         |      |       |
| 26   | Range 1 | Range 0 | SYSCLOCK | IACKI | ACFAIL | SYSFAIL | RESP | RETRY |
| 27   |         |         |          |       |        |         |      |       |

#### Stimulus Condition Bit Definition

2727All signals (even bytes) can be set to a 0 or 1 and are followed by a mask (odd bytes). If a mask bit is set to 1<br/>the corresponding signal is used otherwise it is a don't care.

## Stimulus Events

| 1600 - 1629 | Stimulus Event 1 |
|-------------|------------------|
| 1630 - 1659 | Stimulus Event 2 |
| 1660 - 1689 | Stimulus Event 3 |
| 1690 - 1719 | Stimulus Event 4 |
| 1720 - 1749 | Stimulus Event 5 |
| 1750 - 1779 | Stimulus Event 6 |
| 1780 - 1809 | Stimulus Event 7 |
| 1810 - 1839 | Stimulus Event 8 |

## Stimulus Event Bit Definition

| byte | D7      | D6      | D5       | D4    | D3     | D2      | D1   | D0    |
|------|---------|---------|----------|-------|--------|---------|------|-------|
| 0    | A7      | A6      | A5       | A4    | A3     | A2      | A1   | 0     |
| 1    |         |         |          |       |        |         |      |       |
| 2    | A15     | A14     | A13      | A12   | A11    | A10     | A9   | A8    |
| 3    |         |         |          |       |        |         |      |       |
| 4    | A23     | A22     | A21      | A20   | A19    | A18     | A17  | A16   |
| 5    |         |         |          |       |        |         |      |       |
| 6    | A31     | A30     | A29      | A28   | A27    | A26     | A25  | A24   |
| 7    |         |         |          |       |        |         |      |       |
| 8    | D7      | D6      | D5       | D4    | D3     | D2      | D1   | D0    |
| 9    |         |         |          |       |        |         |      |       |
| 10   | D15     | D14     | D13      | D12   | D11    | D10     | D9   | D8    |
| 11   |         |         |          |       |        |         |      |       |
| 12   | D23     | D22     | D21      | D20   | D19    | D18     | D17  | D16   |
| 13   |         |         |          |       |        |         |      |       |
| 14   | D31     | D30     | D29      | D28   | D27    | D26     | D25  | D24   |
| 15   |         |         |          |       |        |         |      |       |
| 16   | BCLR    | BBSY    | AM5      | AM4   | AM3    | AM2     | AM1  | AM0   |
| 17   |         |         |          |       |        |         |      |       |
| 18   | RESET   | WRITE   | LWORD    | BERR  | DTACK  | DS1     | DS0  | AS    |
| 19   |         |         |          |       |        |         |      |       |
| 20   | BG3     | BG2     | BG1      | BG0   | BR3    | BR2     | BR1  | BR0   |
| 21   |         |         |          |       |        |         |      |       |
| 22   | IACK    | IRQ7    | IRQ6     | IRQ5  | IRQ4   | IRQ3    | IRQ2 | IRQ1  |
| 23   |         |         |          |       |        |         |      |       |
| 24   | EXT7    | EXT6    | EXT5     | EXT4  | EXT3   | EXT2    | EXT1 | EXT0  |
| 25   |         |         |          |       |        |         |      |       |
| 26   | Range 1 | Range 0 | SYSCLOCK | IACKI | ACFAIL | SYSFAIL | RESP | RETRY |
| 27   |         |         |          |       |        |         |      |       |

## Stimulus Controls

| 1410 - 1414 | Stimulus Control SL1  |
|-------------|-----------------------|
| 1415 - 1419 | Stimulus Control SL2  |
| 1420 - 1424 | Stimulus Control SL3  |
| 1425 - 1429 | Stimulus Control SL4  |
| 1430 - 1434 | Stimulus Control SL5  |
| 1435 - 1439 | Stimulus Control SL6  |
| 1440 - 1444 | Stimulus Control SL7  |
| 1445 - 1449 | Stimulus Control SL8  |
| 1450 - 1454 | Stimulus Control SL9  |
| 1455 - 1459 | Stimulus Control SL10 |
| 1460 - 1464 | Stimulus Control SL11 |
| 1465 - 1469 | Stimulus Control SL12 |
| 1470 - 1474 | Stimulus Control SL13 |
| 1475 - 1479 | Stimulus Control SL14 |
| 1480 - 1484 | Stimulus Control SL15 |
| 1485 - 1489 | Stimulus Control SL16 |

## Stimulus Control Bit Definition

| byte | D7        | D6        | D5        | D4        | D3        | D2        | D1        | D0        |
|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0    | STIMULUS3 | STIMULUS2 | STIMULUS1 | STIMULUS0 | EVENT 3   | EVENT 2   | EVENT 1   | EVENT0    |
| 1    | JMP_ELSE3 | JMP_ELSE2 | JMP_ELSE1 | JMP_ELSE0 | JMP_THEN3 | JMP_THEN2 | JMP_THEN1 | JMP_THEN0 |
| 2    | OCCUR7    | OCCUR6    | OCCUR5    | OCCUR4    | OCCUR3    | OCCUR2    | OCCUR1    | OCCUR0    |
| 3    | DUR7      | DUR6      | DUR5      | DUR4      | DUR3      | DUR2      | DUR1      | DUR0      |
| 4    | WAIT7     | WAIT6     | WAIT5     | WAIT4     | WAIT3     | WAIT2     | WAIT1     | WAIT0     |

| EVENT 3                                                        | EVENT 2                                                   | EVENT1                                          | EVENT0                                              |                                                |
|----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| 0                                                              | 0                                                         | 0                                               | 0                                                   | None                                           |
| 0                                                              | 0                                                         | 0                                               | 1                                                   | E1                                             |
| 0                                                              | 0                                                         | 1                                               | 0                                                   | E2                                             |
| 0                                                              | 0                                                         | 1                                               | 1                                                   | E3                                             |
| 0                                                              | 1                                                         | 0                                               | 0                                                   | E4                                             |
| 0                                                              | 1                                                         | 0                                               | 1                                                   | E5                                             |
| 0                                                              | 1                                                         | 1                                               | 0                                                   | E6                                             |
| 0                                                              | 1                                                         | 1                                               | 1                                                   | E7                                             |
| 1                                                              | 0                                                         | 0                                               | 0                                                   | E8                                             |
| 1                                                              | 1                                                         | 1                                               | 1                                                   | All                                            |
|                                                                |                                                           |                                                 |                                                     |                                                |
|                                                                |                                                           |                                                 |                                                     |                                                |
| STIMULUS 3                                                     | STIMULUS 2                                                | STIMULUS 1                                      | STIMULUS0                                           | Nexa                                           |
| STIMULUS 3                                                     | <u>STIMULUS 2</u><br>0                                    | <u>STIMULUS 1</u><br>0                          | <u>STIMULUS0</u><br>0                               | None                                           |
| STIMULUS 3<br>0<br>0                                           | <u>STIMULUS 2</u><br>0<br>0                               | <u>STIMULUS 1</u><br>0<br>0                     | <u>STIMULUS0</u><br>0<br>1                          | None<br>S1                                     |
| STIMULUS 3<br>0<br>0<br>0                                      | <u>STIMULUS 2</u><br>0<br>0<br>0                          | <u>STIMULUS 1</u><br>0<br>0<br>1                | <u>STIMULUS0</u><br>0<br>1<br>0                     | None<br>S1<br>S2                               |
| <u>STIMULUS 3</u><br>0<br>0<br>0<br>0                          | <u>STIMULUS 2</u><br>0<br>0<br>0<br>0                     | <u>STIMULUS 1</u><br>0<br>0<br>1<br>1           | <u>STIMULUS0</u><br>0<br>1<br>0<br>1                | None<br>S1<br>S2<br>S3                         |
| <u>STIMULUS 3</u><br>0<br>0<br>0<br>0<br>0                     | <u>STIMULUS 2</u><br>0<br>0<br>0<br>0<br>1                | <u>STIMULUS 1</u><br>0<br>0<br>1<br>1<br>0      | <u>STIMULUS0</u><br>0<br>1<br>0<br>1                | None<br>S1<br>S2<br>S3<br>S4                   |
| <u>STIMULUS 3</u><br>0<br>0<br>0<br>0<br>0<br>0                | <u>STIMULUS 2</u><br>0<br>0<br>0<br>0<br>1                | <u>STIMULUS 1</u><br>0<br>0<br>1<br>1<br>0<br>0 | <u>STIMULUS0</u><br>0<br>1<br>0<br>1<br>0           | None<br>S1<br>S2<br>S3<br>S4<br>S5             |
| <u>STIMULUS 3</u><br>0<br>0<br>0<br>0<br>0<br>0<br>0           | <u>STIMULUS 2</u><br>0<br>0<br>0<br>0<br>1<br>1<br>1      | <u>STIMULUS 1</u><br>0<br>1<br>1<br>0<br>0<br>1 | <u>STIMULUS0</u><br>0<br>1<br>0<br>1<br>0<br>1      | None<br>S1<br>S2<br>S3<br>S4<br>S5<br>S6       |
| <u>STIMULUS 3</u><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | <u>STIMULUS 2</u><br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | <u>STIMULUS 1</u><br>0<br>1<br>1<br>0<br>0<br>1 | <u>STIMULUS0</u><br>0<br>1<br>0<br>1<br>0<br>1<br>0 | None<br>S1<br>S2<br>S3<br>S4<br>S5<br>S6<br>S7 |

## Windows Operation for Stimulus

## After clicking GO:

- 1. Send the Start Stimulus command. (Display **ACTIVE** in the status bar)
- 2. Read the status byte to check if the stimulus is finished.
- 3. Display **IDLE** in the status bar if inactive.

## After clicking STOP:

Send the Stop Stimulus command to abort the current test. (Display IDLE in the status bar).

## **Backplane Test**

| 1550        | Backplane Test Control |
|-------------|------------------------|
| 1551        | Backplane Test Status  |
| 1552 - 1581 | Backplane Test Signals |

#### Backplane Test Control

| byte | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0          |
|------|----|----|----|----|----|----|----|-------------|
| 1550 |    |    |    |    |    |    |    | SENSITIVITY |

SENSITIVITY - Normal=0, High=1 The High setting is a more sensitive test and is affected by any additional load on signals such as bus terminations.

**Backplane** Test Status

| byte | D7     | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------|--------|----|----|----|----|----|----|----|
| 1551 | ACTIVE |    |    |    |    |    |    |    |
|      |        |    |    |    |    |    |    |    |

ACTIVE Backplane Test in Progress = 1, Backplane Test Stopped = 0

#### Backplane Test Signal Bit Definition

| byte | D7    | D6    | D5    | D4   | D3    | D2   | D1   | D0   |
|------|-------|-------|-------|------|-------|------|------|------|
| 0    | A7    | A6    | A5    | A4   | A3    | A2   | A1   | 0    |
| 1    |       |       |       |      |       |      |      |      |
| 2    | A15   | A14   | A13   | A12  | A11   | A10  | A9   | A8   |
| 3    |       |       |       |      |       |      |      |      |
| 4    | A23   | A22   | A21   | A20  | A19   | A18  | A17  | A16  |
| 5    |       |       |       |      |       |      |      |      |
| 6    | A31   | A30   | A29   | A28  | A27   | A26  | A25  | A24  |
| 7    |       |       |       |      |       |      |      |      |
| 8    | D7    | D6    | D5    | D4   | D3    | D2   | D1   | D0   |
| 9    |       |       |       |      |       |      |      |      |
| 10   | D15   | D14   | D13   | D12  | D11   | D10  | D9   | D8   |
| 11   |       |       |       |      |       |      |      |      |
| 12   | D23   | D22   | D21   | D20  | D19   | D18  | D17  | D16  |
| 13   |       |       |       |      |       |      |      |      |
| 14   | D31   | D30   | D29   | D28  | D27   | D26  | D25  | D24  |
| 15   |       |       |       |      |       |      |      |      |
| 16   | BCLR  | BBSY  | AM5   | AM4  | AM3   | AM2  | AM1  | AM0  |
| 17   |       |       |       |      |       |      |      |      |
| 18   | RESET | WRITE | LWORD | BERR | DTACK | DS1  | DS0  | AS   |
| 19   |       |       |       |      |       |      |      |      |
| 20   | BG3   | BG2   | BG1   | BG0  | BR3   | BR2  | BR1  | BR0  |
| 21   |       |       |       |      |       |      |      |      |
| 22   | IACK  | IRQ7  | IRQ6  | IRQ5 | IRQ4  | IRQ3 | IRQ2 | IRQ1 |
| 23   |       |       |       |      |       |      |      |      |

All signals (even bytes) are followed by a mask (odd bytes). Set a mask bit to test a signal. After the test, read the signal bits. A "1" indicates the signal is shorted to the test signal. A "1" in the test signal bit indicates that the signal could be driven. A "0" in the test signal bit indicates that the signal could be driven.

#### Windows Operation for Backplane Test

After clicking GO:

- 1. Clear the Backplane Test Results Window.
- 2. Set the mask bit for the signal to be tested.
- 3. Display the signal name in the results window.
- 4. Send the Start Backplane Test command. (Display **ACTIVE** in the status bar)
- 5. Read the Backplane Test Status ACTIVE bit. When zero read the Backplane Test Signal bits.
- 6. If the test signal bit is "0' display " Cannot Drive Signal". Continue to step 9.
- 7. If another bit is "1' display the names of the signals followed by the word "SHORTED". Continue to step 9.
- 8. If no bits are set to "1" then display "- OK".
- 9. Advance to the next test signal. Go to step 2.

#### After clicking STOP:

11. Send the Stop Backplane Test command. (Display **IDLE** in the status bar)

The default backplane test checklist should be all signals checked.

## **Configuration Scan**

| Address   |                            |
|-----------|----------------------------|
| 850       | Configuration Scan Control |
| 851       | Configuration Scan Status  |
| 852 - 915 | Configuration Data         |
| 916 - 923 | Configuration Address      |

## Configuration Scan Control

| byte | D7 | D6 | D5 | D4 | D3 | D2   | D1   | D0   |
|------|----|----|----|----|----|------|------|------|
| 850  |    |    |    |    |    | BACK | NEXT | FIND |

FIND set if first time scan. Starts scan at beginning of configuration space.

NEXT set to find next device.

BACK set to find previous device.

Note: Only 1 bit can be set at a time.

#### Configuration Scan Status

| byte     | D7     | D6           | D5         | D4         | D3        | D2        | D1        | D0     |
|----------|--------|--------------|------------|------------|-----------|-----------|-----------|--------|
| 851      | ACTIVE |              |            |            | FUNCTION2 | FUNCTION1 | FUNCTION0 | DEVICE |
|          |        |              |            |            |           |           |           | FOUND  |
| ACTIVE   |        | Configurat   | ion scan i | n progress | s = 1     |           |           |        |
| DEVICE I | FOUND  | Device is fe | pund = 1   |            |           |           |           |        |

FUNCTION Function Number

**Configuration Data** 

| byte      | D7          | D6              | D5            | D4          | D3            | D2      | D1          | D0  |  |
|-----------|-------------|-----------------|---------------|-------------|---------------|---------|-------------|-----|--|
| 852       |             | VENDOR ID (Isb) |               |             |               |         |             |     |  |
| 853       |             | VENDOR ID (msb) |               |             |               |         |             |     |  |
| 854       |             | DEVICE ID (Isb) |               |             |               |         |             |     |  |
| 855       |             |                 |               | DEVIC       | EID (msb)     |         |             |     |  |
| 856       |             |                 |               | COMM        | AND (Isb)     |         |             |     |  |
| 857       |             |                 |               | COMM        | AND (msb)     |         |             |     |  |
| 858       |             |                 |               | STAT        | JS (lsb)      |         |             |     |  |
| 859       |             |                 |               | STAT        | JS (msb)      |         |             |     |  |
| 860       |             |                 |               | REV         | ISION ID      |         |             |     |  |
| 861       |             |                 |               | CLASS (     | CODE (lsb)    |         |             |     |  |
| 862       |             |                 |               | CLAS        | SS CODE       |         |             |     |  |
| 863       |             |                 |               | CLASS (     | CODE (msb)    |         |             |     |  |
| 864       |             |                 |               | CACHE       | LINE SIZE     |         |             |     |  |
| 865       |             |                 |               | LATEN       | CY TIMER      |         |             |     |  |
| 866       | HEADER TYPE |                 |               |             |               |         |             |     |  |
| 867       |             | BIST            |               |             |               |         |             |     |  |
| 868 - 915 | (           | The definition  | n of these by | tes is base | d on the HEAD | ER TYPE | see VME spe | ec) |  |

## **Configuration Address**

| byte    | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|---------|----|----|----|----|----|----|----|----|
| 916-923 |    |    |    |    |    |    |    |    |

Configuration Address – byte 916 is LSB

Windows Operation for Configuration Scan

After clicking FIND or NEXT or BACK:

1. Clear the Header and Analysis windows.

2. Set the Configuration Control byte for FIND, NEXT or BACK.

3. Send the Start Configuration Scan command. (Display **ACTIVE** in the status bar)

4. Read the status byte to check if the scan is finished and a device was found. If no device was found, display the message "No Device Found" in the Analysis Window.

5. Display the Configuration data and Device address.

6. Display IDLE in the status bar.

## After clicking STOP:

Send the Stop Configuration Scan command to abort the current command. (Display IDLE in the status bar)

#### Self Test

| Address |                   |
|---------|-------------------|
| 480     | Self Test Control |
| 481     | Self Test Status  |
| 482     | Self Test Results |

Self Test Control

| byte | D7    | D6        | D5    | D4    | D3    | D2    | D1    | D0    |
|------|-------|-----------|-------|-------|-------|-------|-------|-------|
| 480  | TEST7 | TEST6     | TEST5 | TEST4 | TEST3 | TEST2 | TEST1 | TEST0 |
|      | 0.1.  | 1 4 4 4 1 | C 1   |       |       |       |       |       |

TEST7-0Selects the test to be performed

Self Test Status

| byte           | D7                                           | D6     | D5 | D4 | D3 | D2 | D1   | D0   |
|----------------|----------------------------------------------|--------|----|----|----|----|------|------|
| 481            | ACTIVE                                       |        |    |    |    |    | FAIL | PASS |
| ACTIVE<br>PASS | Self test in progress = 1<br>Test Passed = 1 |        |    |    |    |    |      |      |
| FAIL           | Test Faile                                   | ed = 1 |    |    |    |    |      |      |

#### Self Test Results

| byte    | D7        | D6       | D5    | D4    | D3    | D2    | D1    | D0    |
|---------|-----------|----------|-------|-------|-------|-------|-------|-------|
| 482     | CODE7     | CODE6    | CODE5 | CODE4 | CODE3 | CODE2 | CODE1 | CODE0 |
| CODE7 0 | Test magy | lt and a |       |       |       |       |       |       |

CODE7-0 Test result code

## Windows Operation for Self Test

After clicking GO:

1. Clear the Test Results windows.

2. Display **TESTING** in the status bar

3. Display the name of the test in the test results window.

4. Set the Self Test Control byte with the test code.

#### 5. Send the Start Self Test command.

6. Read the status byte to check if the test is finished and display the test result (PASS or FAIL). 7. Go back to step 3 for each test that is checked.

8. Display IDLE in the status bar.

After clicking STOP:

Send the Stop Self Test command to abort the current test. (Display IDLE in the status bar).

# **Trace Memory Definitions**

This is the basic bit definition of the trace data when performing a Read Trace command. This structure repeats for every sample requested.

Basic Trace Data Definition

| byte | D7      | D6      | D5       | D4    | D3     | D2      | D1    | D0    |
|------|---------|---------|----------|-------|--------|---------|-------|-------|
| 0    | A7      | A6      | A5       | A4    | A3     | A2      | A1    | 0     |
| 1    | A15     | A14     | A13      | A12   | A11    | A10     | A9    | A8    |
| 2    | A23     | A22     | A21      | A20   | A19    | A18     | A17   | A16   |
| 3    | A31     | A30     | A29      | A28   | A27    | A26     | A25   | A24   |
| 4    | D7      | D6      | D5       | D4    | D3     | D2      | D1    | D0    |
| 5    | D15     | D14     | D13      | D12   | D11    | D10     | D9    | D8    |
| 6    | D23     | D22     | D21      | D20   | D19    | D18     | D17   | D16   |
| 7    | D31     | D30     | D29      | D28   | D27    | D26     | D25   | D24   |
| 8    | BCLR    | BBSY    | AM5      | AM4   | AM3    | AM2     | AM1   | AM0   |
| 9    | RESET   | WRITE   | LWORD    | BERR  | DTACK  | DS1     | DS0   | AS    |
| 10   | BG3     | BG2     | BG1      | BG0   | BR3    | BR2     | BR1   | BR0   |
| 11   | IACK    | IRQ7    | IRQ6     | IRQ5  | IRQ4   | IRQ3    | IRQ2  | IRQ1  |
| 12   | EXT7    | EXT6    | EXT5     | EXT4  | EXT3   | EXT2    | EXT1  | EXT0  |
| 13   | T_UNIT1 | T_UNIT0 | SYSCLOCK | IACKI | ACFAIL | SYSFAIL | RESP  | RETRY |
| 14   | T7      | T6      | T5       | T4    | Т3     | T2      | T1    | T0    |
| 15   | T15     | T14     | T13      | T12   | T11    | T10     | Т9    | T8    |
| 16   | ANOM7   | ANOM6   | ANOM5    | ANOM4 | ANOM3  | ANOM2   | ANOM1 | ANOM0 |
| 17   | EXP7    | EXP6    | EXP5     | EXP4  | EXP3   | EXP2    | EXP1  | EXP0  |

T0 thru T15 is a time measurement and T\_UNIT1,0 are the units defined as follows:

| T_UNIT1 | T_UNIT0 |     |
|---------|---------|-----|
| 0       | 0       | ns  |
| 0       | 1       | us  |
| 1       | 0       | ms  |
| 1       | 1       | sec |

# **Startup Operation**

General

At power up all setup memory locations are cleared to zero (except for occurrence counts (=1) and board information). The bit definitions have been selected so the value of zero makes sense for a startup condition. For example, all trace conditions are don't care, trigger position is ½, sample clock is SYNC, etc.

Assume that the RS-232 port is initially set at 9600 baud, 8 bit, 1 stop bit, no parity.

This page intentionally left blank