PCI / PMC / CPCI / PCI-X Bus Analysis

Analyzer

Exerciser

Stimulus

Target

Anomaly

Performance

Compliance

850 System Analyzer/Exerciser

Silicon Control Inc. introduces the ultimate analyzer and exerciser for PCI, PMC and Compact PCI systems. The 850 family of analyzers represent our 3rd generation PCI analyzer combining high performance hardware with a sophisticated and intuitive software interface. The result is a powerful diagnostic tool for bus analysis - all on a single plug-in card.

The PCI850 analyzer provides a multitude of functions to help you analyze your system.

- Capturing bus activity using sequential triggers and filters
- Exerciser to perform memory, I\O and configuration cycles
- Stimulus generation for hardware simulation
- Target memory with addressable windows
- Anomaly detection of protocol and timing violations
- Performance analysis of utilization, transfer rates, latency, statistics
- Compliance testing

SILICON CONTROL INC. 1020 Milwaukee Ave. Deerfield, Illinois 60015

(847) 215-7947 v (847) 808-9090 fax ir

www.silicon-control.com info@silicon-control.com

THE LEADERS IN BUS ANALYSIS

PCI850 State Analysis

State analysis captures bus activity and presents each transaction in an easy to read configurable display

Trace - New														
■→▲·	720ns 🛛 🔳 →	• T 5.242ms ▲→	T 5.241ms	SETUR	< N(ew>	, –	<u>60</u>		0065536	<τ → 0(065535	1 AC	TIVE
SAMPLE	COMMAND	AD[63:0]	C/BE[7:0]	TIME	TIME		BUS DOCTOR	PAR	PAR64	FRAME	IRDY	TRDY	DEVSEL	R
-65536	CFG RD	ААААААААААААА.	AA	1.431s			Addr Unstable	0	1	0	1	0	1	
-65535		000000000000000000000000000000000000000	CC	1.717s			Bus Err	0	0	1	1	0	0	
-65534	INT ACK	FOFOFOFOFOFOFOFO	FO	505.2ms				0	0	0	0	1	1	
-65533	INT ACK	FF00FF00FF00FF00	00	534.7ms				1	1	1	1	1	1	
-65532	INT ACK	FFFF0000FFFF0000	00	2.097ms			Bus Err	0	0		0	0	0	
-65531	INT ACK	FFFFFFFF00000000	00	31ns				0	0	0	0	0	0	
-65530		00000000000000000000	FF	32ns			Bus Err	1	1	1	1	1	1	
-65529	INT ACK	00000000000000000000	00	30ns				0	0	0	0	0	0	
-65528	INT ACK	00000000000000000000	00	Ons	720n:	s		0	0	0	0	0	0	
-65527	INT ACK	00000000000000000000	00	Ons				0	0	0	0	0	0	
-65526	INT ACK	0000000000000000000	00	Ons				0	0	0	0	0	0	
-65525	INT ACK	0000000000000000000	00	Ons				0	0	0	0	0	0	
-65524	INT ACK	00000000000000000000	00	Ons				0	0	0	0	0	0	
-65523	INT ACK	00000000000000000	00		▲			0	0	0	0		0	
-65522	INT ACK	00000000000000000000	00	Ons				0	0	0	0	0	0	
-65521	INT ACK	00000000000000000000	00	Ons				0	0	0	0	0	0	
-65520	INT ACK	00000000000000000000	00	Ons				0	0	0	0	0	0	
-65519	INT ACK	00000000000000000	00	Ons				0	0	0	0	0	0	
-65518	INT ACK	100000000000000000000000000000000000000	00	Ons	-			ΙO	0		1 0	0	0	
•														

State Display

The state display presents each PCI signal in column form. Signals can be moved, inserted, deleted and color and radix defined. Grouped signals such as address can be collapsed and expanded and their range specified.

Decoded Signals

These predefined signals interpret information on the bus to assist in understanding activity. They are treated like any other signal in the state display.

Defined Signals

These signals or group of signals are defined by the user who assigns a name to a given bus pattern.

Sampling

The PCI850 has 3 basic sampling modes to capture bus activity for

state analysis;

CLOCK—every system clock SYNC—address and data only TRANSFER—complete cycles

Triggering

Triggers define when the analyzer captures bus activity. Once a trigger is encountered activity can be observed before and after the trigger event. The position of the trigger can be moved within the trace buffer controlling how much data is before or after the trigger event. Triggers can be simple or complex.

Simple trigger Any PCI signal or combination of

signals.

Logically Combined Triggers Any logical combination of simple triggers using operators such as

AND, OR, NOT, Exclusive OR.

Sequential Triggers

This type of trigger is formed by a number of bus events occurring in a specified order. To accomplish this levels are defined. Each active level controls the analyzers operation based on bus events. Jumps to other levels provide complex sequences.

Filtering

Trace filtering defines which events are captured and stored in the analyzers trace buffer. This filtering of data provides only events which are of interest to you.

PCI850 Timing Analysis

The timing display shows the relationship of bus signals and time measurements

🧮 Trace - No	ew								_ 🗆	×
■→▲· 240ns	s ∎→T	5.242ms	▲→T 5.24	2ms SE	TUP <new></new>	💌 🥶 重	0065536	< τ → 0065535	1 ACTIV	VE_
Signal	Value		1			240ns	ı ,	•	1	
COMMAND	INT ACK	CFG RD				INT /	АСК			
C/BE[7:0]	FO	AA		C.	FO		00		FF	
AD[31:0]	FOFOFOFO	ΑΑΑΑΑΑΑ	A CCCC	CCCC	FOFOFOFO	FF00FF00	FFFF0000	0000000	0	
AD[63:32]	FOFOFOFO	ААААААА	A CCCC	:0000	FOFOFOFO	FF00FF00	FFFF0000	FFFFFFF		
FRAME	0									
IRDY	0									
TRDY	1									1
DEVSEL	1									
REQ64	1									
ACK64										
CLK	0									
RST	0						_	-		
PERR	0									
SERR	0						-			
TDI	1]				-
									Þ	

Timing Display

The timing display represents trace data as waveforms for timing ing and state display to measure analysis. A numeric value is provided on top of each waveform. As in the state display, signals can be moved, inserted, deleted and color and radix defined. Grouped signals such as address can be collapsed and expanded and their range specified. A zoom is provided to get a better look at waveform relationships.

Sampling

The PCI850 has a precision oscillator used to sample the bus at periodic intervals for timing analysis. The sample rate is selected by the user.

Time Measurements

Cursors can be placed on the timtime between the trigger and a cur- for state and timing analysis a sor and the time between 2 cursors. Times are shown at the top of grams the analyzer based on what the display and in the trace window.

Status Indicators

At the top of the display a status indicator shows the number of samples captured before and after the trigger and the current state of the analyzer.

Capture Control

GO and STOP icons control when tracing starts and halts.

Setup Wizard

To assist in setting up the analyzer Setup Wizard automatically prothe user wants to look at. Once a setup is defined it can be saved and later loaded.

PCI850 Exerciser

The user can initiate memory, I/O and configuration cycles as well as scan configuration space and stimulate the bus

Exerciser

The exerciser performs 3 main functions:

- 1. Initiator
- 2. Stimulus Generator
- 3. Configuration Scan

Initiator

The initiator performs PCI reads and writes to memory, I/O and configuration space. The user has complete control over many aspects of the transfer including:

- Address Space
- Address Width
- Data Width
- Single or Burst
- Write Data Value

The data from a read or write can be obtained from a file or the user. When data is read to the display it is shown in both hex and ASCII. Special tests can be performed including reading and writing test patterns, comparing and verifying data and repeating cycles.

Stimulus

The PCI850 has the ability to generate signal patterns on the PCI bus. These features provide hardware simulation and test system response to events.

Stimulus is driven onto the bus under control of a 16 level sequencer. At each level any combination of bus signals can be specified along with an activation time and wait time synchronized to the system clock. These levels can then be linked together to form complex stimuli. Initiation of this stimulus can be controlled manually or in response to a bus event.

Configuration Scan

An automatic scan of configuration space identifies the boards in a system and displays the configuration information.

A search is performed of all configuration registers and the results are displayed and decoded for easy identification.

response to events. The values of the configuration registers are displayed in one winder control of a 16 level se- dow and the decoded meaning in another window.

> Vendor names, type of board, version numbers, etc. are displayed for easy interpretation.

PCI850 Performance

There are 5 types of performance measurements that are made in real time with dedicated hardware:

- Bus Utilization
- Transfer Rate
- Latency
- Burst Distribution
- Statistics

Bus Utilization

This measurement identifies the resources that are using the bus. These can include address usage, command type and overall idle and busy times.

Transfer Rate

The transfer rate measurement measures in MB/s the speed of data transfers. These measurements can be specified for specific address ranges and cycles.

Latency

The efficiency of data transfers in a system depend upon the latencies involved. Measurements are taken of master, target, address, data and arbitration to provide a look at latencies that slow a bus down.

Burst Distribution

The amount of data transferred during each cycle is measured and displayed in 8 ranges. The ranges include single byte transfers and up.

Statistics

Statistics can be obtained for any bus signal or group of signals. For

example the number of memory reads, memory writes, writes to an address or address range can be counted.

Performance Display

The performance display consists of a moving time graph and an average/min/max bar or pie chart. The time graph shows the current measurement and is updated at fixed time intervals specified by the user. The bar chart averages this moving data and tracks the min and max values. A scroll bar under the time graph lets you review the previous data.

PCI850 Anomaly Detection

Automatic Anomaly Detection

The PCI850 continuously monitors and detects over 100 protocol and timing violations. Dedicated hardware checks setup and hold times, unstable signals and glitches on lines. Protocol checking screens for illegal signal assertions referenced to the PCI specification.

Anomaly Display

The anomaly display is divided into 2 windows;

- 1. Anomaly Checklist
- 2. Test Results

Anomaly Checklist

The anomaly checklist window allows selection of specific tests. Set All and Clear All buttons are provided to select all the tests and clear all the tests. The check- Highlighting the error displays a list can be saved and later loaded. complete description of the

Test Result Window

After starting the anomaly test the result window displays all violations detected. The user can scroll through these results as well as save them to a file.

State/Timing Display

During state and timing analysis violations are stored in the trace buffer as selected in the checklist. A description of the violation can be selected for display in the state and timing windows.

To include this information in a state or timing display simply select the Bus Wizard decoded signal. The Bus Wizard displays a

short description of the error. anomaly.

Trigger and Filter Setup

Any anomaly can be selected as a trigger or filter when tracing bus activity. When used as a trigger this provides a view of activity that lead up to the error. Selecting anomalies for a filter allows the user to trace only errors detected by the anomaly checker.

PCI850 Compliance Testing

Testing	rd Compliance Tests		
resting		😐 重	ACTIVE
against a	Test Checklist	Test Results	
compliance	Master Tests		
checklist is	Interrupt Cycles		
performed	✓ Special Cycles ✓ Parity Errors		
to insure	✓ I/O Cycles ✓ Reserved Commands		
PCI com-			
patibility	<u>Clear All</u>		
	Vendor ID 0000 V	/endor Name	
	Device ID 0000 (Class	
	Function # 0 🔻		
	Address 00000000		
	<u>Find</u> < <u>Back</u> <u>Next</u> > <u>Option</u>	ns <u>L</u> oad <u>S</u> ave	<u>H</u> elp

Compliance Testing

Compliance testing is performed based on the PCISIG compliance Tests are grouped in categories checklist. A complete suite of master and target tests are performed automatically. During some tests the user is prompted to change the system setup or initiate a bus cycle from the device under test.

Compliance Display

The compliance display is divided into 2 windows:

- 1. Test Checklist
- 2. Test Results

Test Checklist

The compliance test checklist window allows selection of spe-

cific tests. Set All and Clear All buttons are provided to select all the tests and clear all the tests. for easy group selection. The checklist can be saved and later loaded.

Test Result Window

After starting the compliance test the result window displays each test and if the test passed. The user can scroll through these pliance tests. These include tracresults as well as save them to a file.

Device Identification

Before starting the compliance test the configuration space is scanned to determine the device to be tested. Vendor information is displayed to identify the device. To select another device Back and Next buttons start a new scan of the configuration space before and after the current device.

Multiple Test Functions

Many of the features of the PCI850 are used during the coming, exercising, anomaly detection, target access and configuration scanning.

Target Memory

A target memory is provided which is accessible through the PCI bus. An address window can be defined for PCI transfers. The contents of the target memory can be displayed and altered directly by the user or through a file. Data in the target memory can be used for exerciser functions. For example data written into the target memory can be sent back on the bus in it's original state or modified.

Configuration Scan

The configuration scan automatically detects devices on the bus and displays configuration information in 2 windows:

- 1. Block configuration data displays the configuration information in binary form.
- 2. Decoded Configuration interprets the information and displays Vendor name, class description, revision codes, etc.

To select another device Back and Next buttons start a new scan of the configuration space before and after the current device.

Configuration information can be saved, printed and loaded back for display.

External Trigger Inputs

Eight external inputs are provided for monitoring signals external to the PCI connector. These signals can be selected for display in the state and timing windows and used in trigger and trace setups.

A trigger cable is included which plugs into a trigger connector on the front panel. This connector also provides a ground signal.

External Trigger Output

One trigger output is provided to facilitate the triggering of other test equipment. When a trigger is encountered this output is driven active. The polarity and duration of the trigger output is specified by the user. This signal is available on the same front panel trigger connector along with the trigger inputs.

Communication Interfaces

The PCI850 communicates with a PC or terminal through an RS232 or USB interface. The RS232 interface operates at speeds up to 115K baud and the USB interface at 12Mbits/sec. All setup and display results are sent over these interfaces. USB (type B) and RS232 (DB9) connectors are located on the front panel.

External Power

The PCI850 can be powered by an external power supply. This feature can be useful when monitoring a system power up sequence. A power connector is located on the front panel. This connector supplies power to the analyzer and is fuse protected. A power cable is included with the analyzer.

Expansion Connector

A 200 pin expansion connector is located on the analyzer for optional plug on accessories. These include board test adapters and a 533 Mhz high speed timing module.

Reset Options

A pushbutton reset switch and reset jumpers select options for resetting the board and system.

LED Indicators

A green LED illuminates after the analyzer has passed it's self test and a red LED is under user control.

Reprogramability

New firmware updates can be downloaded into flash memory on the analyzer. Updates are available on our Web site.

General Specifications PCI Compliance: PCI 2.2, PCI-X 1.0 Compliant Bus Size: 64 or 32 bit		Trigger Types:	Single Condition Logical Combination 16 Level Sequencer			
Bus Signal Levels:	5V or 3.3V	Trigger Positions:	0%, 25%, 50%, 75%, 100%			
Trace Specifications	5	Occurrence Counters: 16 hardware counters, 20 hits				
Trace Memory:		Occurrence Counters	. To hardware counters 20 ons			
PCI850-1	128K by 144 bits	Event Counters:	16 hardware counters 20 bits			
PC1850-2 PC1850-3 PC1850-4 PC1850-5	250K by 144 bits 512K by 144 bits 1M by 144 bits 2M by 144 bits	Time Tag:	7.5 ns to 60 sec.			
FC1850-5	2WI by 144 bits	Exerciser Specificat	ions			
Sampling Rate: High speed module	133 Mhz 533 Mhz	Initiator Bandwidth:	528 MB/s rate			
Sampling Modes:	System Clock	Initiator Bus Width:	64 or 32 bit			
	System Clock w/ Address/Data System Clock w/ Transfers On board precision Oscillator (7 5ns to 15us)	Initiator Transfers:	Memory, I/O, Configuration			
	(7.515 to 1505)	Target Specification	IS			
Sampled Signals:	AD[63:0], C/BE[7:0], FRAME, DEVSEL TRDY IRDY PAR	Target Memory:				
	REO, GNT, RST, LOCK, CLK,	PCI850-1	1 MB			
	INTA, INTB, INTC, INTD,	PCI850-2	2 MB			
	PAR64, PERR, SERR, REQ64,	PCI850-3	4 MB			
	ACK64, TDO, TDI, TCK, TMS,	PCI850-4	8 MB			
	TRST, SDONE, SBO, EXT[7:0]	PCI850-5	16 MB			
External Inputs:	8 Front Panel Trace/Trigger	Target Bandwidth:	528 MB/s burst rate			
External Outputs:	1 Programmable Trigger Output	Target Bus Width:	64 or 32 bit			
Triggers:	8 Trigger Conditions each specifying 100 PCI signals, 8 external triggers and anomaly errors					

Protocol Violations Checked 32 IRDY asserted before DEVSEL	
33 STOP asserted before DEVSEL	
34 LOCK asserted during address phase	
Master	
1 FRAME deasserted before IRDV asserted <i>Conoral</i>	
2 FRAME asserted without IRDY or TRDY	
3 FRAME not deasserted within 3 clocks after STOP 35 Maximum write completion time exceeded	
4 No FRAME within 16 clocks from GNT 36 REO to GNT time > 15 clocks	
5 No IRDY within 8 clocks from FRAME 37 REQ to GNT time > 30 clocks	
6 No TRDY or STOP within 16 clocks from initial 38 REQ to GNT time > 45 clocks	
data phase 39 REQ to GNT time > 60 clocks	
7 No TRDY within 8 clocks after initial data phase 40 REQ to GNT time > 90 clocks	
8 No IRDY after FRAME asserted 41 Improper fast back-back cycle	
9 DEVSEL deassserted before transaction complete 42 AD[1:0] not 0 during MWI cycle	
10 Invalid Command on CB/E[3:0]43 REQ64 not asserted with FRAME	
11 Invalid Command on CB/E[7:4] during DAC cy- 44 ACK64 not asserted with DEVSEL	
cle 45 Master Abort during DEVSEL	
12 IRDY asserted during turnaround cycle46 FRAME deasserted after DAC cycle	
13 Address PAR error47 Target responding to invalid command	
14 Data PAR error48 Target response before DEVSEL	
15 Address PAR64 error49 Address does not match Byte Enables	
16 Data PAR64 error	
17 No PERR after parity error	
18 Improper Master Abort - IRDY deasserted before	
TRDY/STOP asserted Timing Violations Checked	
19 FRAME asserted before GNT	
20 STOP not deasserted after FRAME deasserted Unstable Signals	
21 FRAME and IRDY high when STOP is asserted	
22 STOP not asserted when FRAME asserted 50 AD[/:0] Unstable during address phase	
51 AD[15:8] Unstable during address phase	
<i>Target</i> 52 AD[25:10] Unstable during address phase	
1 argei 55 AD[51.24] Unstable during address phase 54 AD[20:32] Unstable during address phase	
23 No target turneround 55 AD[47:40] Unstable during address phase	
23 No target turnaround 55 AD[47:40] Onstable during address phase	
25 STOP deasserted with FRAME deasserted 57 AD[63:56] Unstable during address phase	
26 PERR asserted during special cycle 58 AD[7:0] Unstable during data phase	
27 PERR asserted during address cycle 59 AD[15:8] Unstable during data phase	
28 TRDY asserted during target abort 60 AD[23:16] Unstable during data phase	
29 LOCK asserted after target abort 61 AD[31:24] Unstable during data phase	
30 IRDY asserted when FRAME deasserted 62 AD[39:32] Unstable during data phase	
31 TRDY asserted before DEVSEL 63 AD[47:40] Unstable during data phase	

Silicon Control Inc. 1020 Milwaukee Ave. Deerfield, IL 60015 phone: 847-215-7947 fax:847-808-9090 info@silicon-control.com

 64 AD[55:48] Unstable during data phase 65 AD[63:56] Unstable during data phase 66 CBE[3:0] Unstable during address phase 67 CBE[7:4] Unstable during address phase 68 CBE[3:0] Unstable during data phase 69 CBE[7:4] Unstable during data phase 	 99 RESET high to first FRAME active invalid 100 RESET to REQ64 time invalid 101 Gliches on RESET Performance Analysis 		
Setup and Hold 70 AD[7:0] not valid within 12ns of clock 71 AD[15:8] not valid within 12ns of clock 72 AD[23:16] not valid within 12ns of clock 73 AD[31:24] not valid within 12ns of clock 74 AD[39:32] not valid within 12ns of clock 75 AD[47:40] not valid within 12ns of clock 76 AD[55:48] not valid within 12ns of clock 77 AD[63:56] not valid within 12ns of clock 78 CBE[3:0] not valid within 12ns of clock 79 CBE[7:4] not valid within 12ns of clock 80 DEVSEL not valid within 12ns of clock 81 FRAME not valid within 12ns of clock 82 IRDY not valid within 12ns of clock 83 TRDY not valid within 12ns of clock 84 LOCK not valid within 12ns of clock 85 STOP not valid within 12ns of clock 86 REQ64 not valid within 12ns of clock 87 ACK64 not valid within 12ns of clock 88 PERR not valid within 12ns of clock 89 PAR not valid within 12ns of clock 80 PAR 64 not valid within 12ns of clock 80 PAR64 not valid within 12ns of clock	Functions: Bus Utilization Transfer Rate Latency Burst Distribution Statistics Measurement Displays: Moving Time Graph Average Bar Chart Minimum Bar Chart Maximum Bar Chart Number of Measurements: 8 Simultaneous Conditions Measurement Conditions: All Bus Signals Commands Address Ranges Initiator Specific Target Specific Arbitration Specific		
	Compliance Testing		
General	Test Conditions: PCISIG Checklist		
 91 CLK Period < 15ns (66 Mhz system) 92 CLK Period < 30ns (33 Mhz system) 93 CLK High < 6ns (66 Mhz system) 94 CLK Low < 6ns (66 Mhz system) 95 CLK High < 11ns (33 Mhz system) 96 CLK Low < 11ns (33 Mhz system) 97 Gliches on CLK 98 RESET high to first Configuration access invalid 	Test Type: Automatic/Manual		

Silicon Control Inc. 1020 Milwaukee Ave. Deerfield, IL 60015 phone: 847-215-7947 fax:847-808-9090 info@silicon-control.com

Front Panel	Interfaces	Ordering Information: PCI Analyzers			
RS232 Port:	DB9 connector, 110 to 115K Baud	PCI850-1	128K Sample Trace Buffer		
	(cable included)	PC1850-2	256K Sample Trace Buffer		
USB Port:	Series B connector, 12 MB/s	1 01050 2	2 MB Target Memory		
	(cable included)	PCI850-3	512K Sample Trace Buffer		
			4 MB Target Memory		
Indicators:	GO LED, User LED	PCI850-4	1 M Sample Trace Buffer		
			8 MB Target Memory		
Pushbutton:	Reset Analyzer or System	PCI850-5	2 M Sample Trace Buffer		
			16 MB Target Memory		
External Pow	er: 2 Conductor front panel				
	(cable included)	Compact PCI Analyz	gers		
т ·		CPC1850-1	128K Sample Trace Buffer		
Trigger:	10 pin socket (8 in, 1 out, 1 ground)		1 MB Target Memory		
	(cable included)	CPC1850-2	250K Sample Trace Buller		
Fusas	Main power and External power	CDC1850 3	2 MD Target Memory 512K Sample Trace Buffer		
ruses.	Main power and External power	CFC1050-5	A MB Target Memory		
		CPC1850-4	1 M Sample Trace Buffer		
Power Requi	rements	CI C1050 +	8 MB Target Memory		
rower Requi	Operating 5V at 3 amps max	CPCI850-5	2 M Sample Trace Buffer		
	Standby—5V at 1 Amp max		16 MB Target Memory		
	Generated on-board– 3.3V and 2.5V				
		PMC Analyzers			
Dimensions:		PMC850-1	128K Sample Trace Buffer		
	PCI850—PCI Short Card		1 MB Target Memory		
	PMC850– Single slot PMC card	PMC850-2	256K Sample Trace Buffer		
	CPCI850–3U Compact PCI card		2 MB Target Memory		
		PMC850-3	512K Sample Trace Buffer		
			4 MB Target Memory		
		PMC850-4	1 M Sample Trace Buffer		
			8 MB Target Memory		
		PMC850-5	2 M Sample Trace Buffer		
			16 MB Target Memory		
		All analyzers include Windows and API software. ca-			
		bles, carrying case a	nd manuals.		